Molecules in the Universe

J.H. Fillion

F Dulieu C. Janssen

Various Laboratory Experiments and Theoretical devlopments dedicated to the study the molecular interactions in the gas/surfaces for astrophysical and atmospheric appplications

Reactivity and interaction at gas-solid interface and in the ice

Molecular processes and parameters for atmospheres and ISM

(From Clayton, R., 1993, Oxygen Isotopes in Meteorites, Annu. Rev. Earth Planet Sci. v 21, p. 1923)

Molecules in the Universe

Jussieu Spin, photons and ices :	3.5 C/EC + 1 PHD	+ 2 IR + 1 IF	
Jussieu SMILE (Molecular Spectroscopy and Laser Instrumentation for Environment)	5 EC+1Em + 2 PHD	+ 1 tech	
Cergy Reactivity on cold surfaces :	5 EC+1IR + 3 PHD	+ 1 IE+1 tech	
Meudon van der Waals systems for Astrophysics and for Planetology	1.5 EC+ 1 IR 1 P.Doc	+ 2 IE	
Collisional excitation, reacticity and high resolution VUV spectroscopy of interstellar molecules Meudon	2 EC + 2 Em	+ 1 IE+1 tech	
Total 22 C/	EC and 12 Ing. & Tech.		

al 22 C/EC and 12 Ing. & lech 6 PHD students 1 post-doc

Scientific animation

Molecules in the Universe workshops

- Every two months: ~ 4 per year
- Location is cycling : Jussieu-Cergy-Jussieu- Meudon-Jussieu-Cergy-...
- 2 3 seminars
 - + 1 « interpole » meeting per year
 - ✦ Permanents of the pole
 - ✦ PHD students
 - Others poles LERMA
 - ♦ External
 - + news or short coms

Discussion continues during our homemade buffet

June 14, Cergy: Bron & Minissale speakers

Gaz-surfaces interactions : reactivity

Plasmas Discharges Atomic beams

Cold substrate (10 K) (graphite, water ice, silicate) Analysis chamber

- IR Reflexion-Absorption
- Mass spectr.

O-atom diffusion at very low temperature

Towards Oxygenation reactions (not only hydogenation)

Desorption after reactions

LERMA UMR 8112

« SPICES 2 » set-up : Surface Processes and ICES 2

Higher Sensitivity

- Increase vacuum perfomance
- New analysis Chamber
- New mass spectrometer

New achievements

- Ion/neutral detection
- Kinetic energy measurement
- Compatible for : continuous (synchrotron)
 Or pulsed (laser)
 sources

INFN, Frascati 2017

^{-&}gt; internal energy

Gas-surfaces interactions : UV Photon Stimulated Desorption

Axis II – Molecular processes and parameters for atmospheres and ISM

Driving force:

- Unique tools for providing traceable spectroscopic data: Molecular Metrology (Bohr) *High accuracy measurements* 3.5 Theory and simulations 31 O *Reference data for physical and* atmospheric research Rosio (Bohr) 0.30 density Ozone cross section @ 0.25 $\sigma = 16.470 \ 10^{-20} \ \text{cm}^2 \ (\pm 0.2\%)$ $\lambda_{\rm vac} = 325.126 \ \rm nm$ 0.20 T = 294.09Ozone opt. 0.15 Janssen et al, AMT, 2017 under review N = 270.10 = 0.999970.05 0.00 5 10 15 20 Ozone column density ($n \cdot L$) / 10¹⁸ cm⁻²
- Provide fundamental molecular data for
 - understanding and studying climate and atmospheric composition change
 - modelling cometary and stellar atmospheres as well as the interstellar medium
 - fundamental physics
- Study terrestrial & planetary atmospheres
 - understanding and studying climate and atmospheric composition change
 - develop new analytical tools and techniques of observation (axis III)

Axis II – Molecular processes and parameters for atmospheres and ISM

Towards traceable IR spectroscopic data for planetary research (PRESPASS)

- Setup of frequency-comb stabilised laser spectrometer @ 10 µm under way (FCS-DL)
- Suitability of laser unit for line shift measurements (Minissale et al JMS 2017, accepted).
- Michelson interferometer stabilised diode laser spectrometer (MIS-DL)
- Coupling to UV and VIS laser : most precise absolute cross section of ozone so far (more than 10 x better than actual reference, Janssen et al. AMT, 2017 under review) *Projects*

- Finalize stabilization scheme
- Link to frequency reference (REFIMEVE+/FIRST-TF) from SYRTE
- Retrieve line parameters and line profile information on oxygen bearing key compounds: O₃, H₂O and CO₂
 - Link to isotope anomalies in atmosphere & solar system.

Sondage de l'atmosphère Terrestre

- Télédétection FTIR de la composition atmosphérique
- Physico-chimie atmosphérique
- Spectroscopie haute résolution
- TCCON-Paris et Absorption long parcours entre les tours de Jussieu

Ground Based GAS STATION

High-resolution Fourier transform spectrometer FTS-PARIS

Té et al. (2012)

- high-resolution FTS (2.4·10⁻³ cm⁻¹) + sun tracker
 measurement of 10+ species:
- •O₃, CO, CO₂, CH₄, H₂O, HD
- satellite validation
- -air quality and pollution studies (megacity
- impact) GHG trend
- + variability (TCCON/NDACC in 2014)
- vertically resolved information

Study of atmospheric pollutants and greenhouse gases above Paris

- High resolution FTS-Paris is in operation since 2007
- Part of international TCCON network (since 2015)
- Part of OCAPI (IPSL observation network) & QualAir (UPMC)
- Provides unique data: only one other mega-city station worldwide
- Validation target for on-going and future satellite missions
- Strong society impact

OCO-2 Paris overflight

Wunch et al, AMT 2017

Projects

- GHG satellite validation projects (OCO-2, GOSAT-2, CNES: MicroCarb, Merlin, ...)
- Development of WMO calibration for TCCON-Paris (CNES)
- Systematic study of site-specific effects (a-priori, ...)
- Participation in regional air quality campaigns (DIM QI², ...)
- Extension of spectral coverage and development of NDACC-IRWG capabilities (validation IASI-NG ...)

Sun tracker FTS-Paris Té et al, JAOT 2012

Axis II – Molecular processes and parameters for atmospheres and ISM

VUV spectra of molecules and multiply charged heavy element ions

- High resolution (R = 150000) VUV normal incidence spectrograph Meudon
- Image plates with 5 decades of linear intensity response
- Penning discharge or HV vacuum sparks
- Wavelength range 200-3000 Å

Bainbridge et al, Universe 2017

Projects

- Emission spectra of the hydrogen isotopologue HD (theory & experiment)
- Emission spectra of iron group multiply charged ions (Fe-V, Ni-V) as laboratory references for possible change of the fine structure constant *α* in white dwarfs observed by HST
- Study of transition energies and probabilities of heavy element (Eu, Er, Tm) ions for abundance studies and radiative transfer simulations of Neutron Star Merger Ejecta

Axe II – Molecular processes and parameters for atmospheres and ISM

Collisional parameters for the modelling of non-LTE media

- Simulations based on quantum chemistry and quantum dynamics
- Rotational excitation of molecules (ISM)
- Electronic excitation of atoms (stellar atmospheres)
- Variety of systems and temperature conditions
- Development of the BASECOL database (since 2004)
- Creation of the worldwide VAMDC e-infrastructure

Projects

H₂O/HCN

5D PES

0

- Support of ALMA, Herschel, NOEMA, GAIA, Rosetta, ... exploitation
- Systems with more degrees of freedom (larger species, vibration,...)
- Improved description of processes for high-temperature media
- Collisions of molecules with water (cometary atmospheres)
- Update of BASECOL database and development of VAMDC platform

Axe II – Molecular processes and parameters for atmospheres and ISM

Reaction rates for the chemical modelling of astrophysical media

- Simulations based on quantum chemistry and quantum dynamics
- Use variety of complementary approaches
- Low-temperature reactions between unstable radicals
- Deep insight into reaction mechanisms
- State-to-state reaction rates

Merged-beams apparatus (Columbia Univ.)

Rivero-Santamaria et al., 2017

Projects

- Study of low-temperature isotopic effects (C+H₂⁺/HD⁺/D₂⁺ reactions)
- Joint experimental/theoretical study (D.W. Savin group, Columbia Univ.)
- Study of state-resolved photodissociation processes (diffuse ISM)

Close links between observation, simulation, laboratory studies and databases

- Molecular VUV data (H₂, CO) are fed into MOLAT database
- Calculated collision rates are directly integrated into BASECOL
- Consistency of spectroscopic data bases (HITRAN, GEISA, S&MPO) is verified through remote sensing
 - → triggers new laboratory studies

ortho-NH₂D + H₂ (*Daniel et al MNRAS 2014*) added to BASECOL database (*Dubernet et al, A&A, 2013*) in 2016

- Unusual and unexplained molecular signatures, such as ortho-para ratios and anomalous isotope ratios, provide new and exciting probes for their environment
 - New and highly sensitive tools for laboratory studies are developed

H₂O in supersonic expansion

Georges, Michaut et al JPCA 2017

Key questions:

- Understand physico-chemical origin of unusual isotope and ortho-para ratios (OPRs)
- Why do observed OPRs in cometary atmospheres, protoplanetary disks, PDRs and diffuse clouds often differ from what is expected from these environments ?
- Can we understand low T isotope fractionation on icy films : tunnelling and large isotope effects ?
- Where does heterogeneity of oxygen isotopic composition of the solar system come from ?
- What can we learn from isotope signatures of multiply substituted isotopologues ?

Isotope anomalies in O + XO reactions

- Ozone formation (O + O₂ → O₃) is the prime example for chemically induced mass independent (MIF) isotope anomalies
- Current laboratory evidence is ambiguous and in contradiction to models

Reactor

Isotope selective decomposition rates

Liquid ozone

Self shielding in the solar system

from *Rumble et al. GSE 2013*

Projects & goals

- Investigate ozone decomposition O₃ → O + O₂ as inverse kinetic problem (gas & surface)
- Resolve contradiction between models & experiments
- Confirm or reject hypothesis of MIF in surface reactions: *Test chemical models of solar system isotope heterogeneity*
- Study $O + CO \rightarrow CO_2$ using newly developed instrument

New tools for new isotope research

- Doubly substituted isotopologues are currently studied by mass spectrometric techniques that require extremely long analysis time (~ several h /sample) and suffer from interferences
- Optical methods have the potential to avoid these drawbacks
- New multi-isotopologue analyzer is being developed at LERMA

multi-pass absorption cell

container

Affek et al, GCA 2006

Projects & goals

• Develop new tools for isotope research: optical multi-isotope analyser

(Collaboration U Heidelberg (D) / thesis co-direction)

- Study large set & extremely rare isotopologues of CO₂ (¹²C¹⁶O₂,¹³C¹⁶O₂,¹⁶O¹²C¹⁸O,¹⁶O¹²C¹⁷O,¹⁶O¹³C¹⁸O,¹⁶O¹³C¹⁷O)
- Investigate & understand sources and processes of atmospheric CO₂
- Investigate link to ozone chemistry and O+CO reaction (previous slide)

How efficient is the H/D isotope exchange in ice desorption ?

- Small differences in binding energies might have huge impact on isotopic desorption rates in the submonolayer regime (Amiaud et al 2015)
- Expect large H and D isotope effects due to quantum tunnelling

Project:

Rimola et al, PCCP 2010

- Determine the H/D exchange of water and ammonia in presence of reactive traces (e.g. H₂CO).
- Study the isotope effect in the reactivity of H and D in the building of the ice

Impact: Possible transformation of ices in the solar system during sublimation. Collaboration: Cazaux, Delft (NL), Rimola, Barcelona (S).

What is the link between the thermal history of ices and spin temperatures measured in space ?

New experiments to

- study small hydrogenated molecules (H₂O, H₂CO...) in link with observations
- better understand the role of nuclear spin states of H₂, water and other hydrogenated molecules on the global chemistry
- determine the influence of adsorption & desorption from grains on the abundance of ortho and para species in the medium
- prepare "pure" spin state populations, which will provide unambiguous and precise spin conversion rates

Collaboration with pole ISM International collaboration (U Sherbrooke, CA)

Ortho-to-para ratio : 2.6 (Tspin = 30 K) determined using PDR Meudon code (Putaud 2017) to be compared to 0.3 using simple model (Choi A&A 2014)

What is the link between the thermal history of ices and spin temperatures measured in space ?

Project & goals

- Develop new experimental tools
- Measure characteristic times for nuclear spin conversion on icy mantle
- Establish link between OPR on ice and OPR in gas phase
- Understand the influence of the desorption (thermal or nonthermal) on the OPR in the gas phase

Summary and highlights

- Fundamental physics approach for understanding mechanisms at the molecular level that can solve astrophysical and atmospheric research problems
- Strong & unique laboratory astrophysics activity
- Atmospheric observation and lab spectroscopy have strong social relevance and close link to gas metrology activities is established via participation in international WG
- Activities span whole range from laboratory measurements/simulation to observation and results are distributed to the international community via databases
- Development of new and unique technologies for using & studying molecular anomalies as probes:
 - Rare (doubly substituted) isotope analyser for CO₂
 - Nuclear spin state enrichment

Why do we need high resolution spectroscopy is

Instrument Resolution R	3 10 ⁻⁶	2.5 10 ⁻⁴	5 10 ⁻⁵	1.5 10 ⁻⁷	10 ⁻⁸
Spectroscopic Requirement (Δ <i>v/v</i>)		10 ⁻⁷	3 10 ⁻⁸	3 10 ⁻⁹	~ 10 ⁻¹⁰
		-	0.3	.1	< 0.1

* for calibration

- Isotope abundance of HDO measured by MIPAS satellite limited by spectroscopy (Frankenberg et al, Science 2009) ?
- Ground based remote sensing of H₂O isotopologues (D, ¹⁸O) limited by spectroscopy (Rokotyan et al, AMT 2014)
- Accuracy of molecular parameters limits correction of telluric spectra in ESO instruments (Smette et al, A&A 2015)