LERMA UMR8112

Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères



Accueil > fr > Recherche > Molécules dans l’Univers > Expériences de Spectroscopie Moléculaire > Spectroscopie Moléculaire et Instrumentation Laser pour l’Environnement

Spectroscopie Moléculaire et Instrumentation Laser pour l’Environnement

par Jean-Hugues Fillion, Mathieu Bertin - publié le , mis à jour le

Membres

Christof Janssen (Chercheur CNRS - Responsable d’équipe), Corinne Boursier (MCF), Hadj Elandaloussi (Ingénieur), Pascal Jeseck (Ingénieur), Yao-Veng Té (MCF), Thomas Zanon (MCF), Dmitri Koshelev (Doctorant).

Contexte

Les molécules sont les briques constitutives de notre univers et les observer au sein de leur environnement permet de mieux comprendre de nombreux processus microscopiques, notamment ceux qui sont liés aux conditions d’apparition de la vie. L’interaction du rayonnement avec la matière est un des outils privilégiés pour sonder les molécules dans leurs différents états et environnements. Il faut donc développer des techniques adaptées et réaliser des mesures performantes.

Alignement d’une cellule d’absorption à faisceaux croisés pour des mesures de précision dans l’ozone.
C. Janssen

Domaines de recherche & Collaborations

L’activité de recherche principale de l’équipe SMILE concerne la compréhension des processus dynamiques et moléculaires qui jouent un rôle dans les atmosphères planétaires ou protoplanétaires. En utilisant des expériences de laboratoire ou des mesures atmosphériques, nous nous intéressons plus particulièrement à l’étude des rapports isotopiques et des concentrations de petites molécules (comme O3, CH4, CO, CO2, composés aromatiques, etc), ce qui renseigne sur l’origine et l’évolution de ces molécules.

Sujets de recherche plus détaillés : anomalies isotopiques de l’oxygène dans les réactions O + XO, voies de formation de l’ozone dans les atmosphères planétaires et en laboratoire, spectroscopie IR à haute résolution ou spectroscopie UV de molécules d’intérêt astrophysique ou atmosphérique, comparaison des propriétés moléculaires dans différents domaines spectraux, mesures de précision des paramètres moléculaires, observation de gaz à effet de serre par des méthodes de télédétection au sol (TCCON), et suivi de la pollution atmosphérique par méthode spectroscopique.

Ce travail fait partie de collaborations nationales (GSMA, Reims ; LiPhy, Grenoble ; LPL, Villetanneuse ; LSCE, Gif-sur-Yvette) et internationales (U. Utrecht, Pays-Bas ; U Copenhagen, Danemark ; U Wuppertal, KIT Karlsruhe, U Bremen ; Allemagne).

A l’aide de dispositifs expérimentaux, souvent développés par nous-mêmes, pour des mesures quantitatives in-situ ou à distance, nous étudions les molécules d’intérêt en phase gazeuse à différentes échelles de temps et d’espace pour des problèmes qui vont de l’origine du système solaire jusqu’aux processus qui influent sur le climat de la Terre.
Nos principaux instruments de mesure sont le spectromètre à transformée de Fourier STF-Paris, le spectromètre à diode laser MIS-TDLAS ainsi que le spectromètre asservi sur un peigne de fréquence PRESPASS en cours de développement. Nous utilisons aussi des spectromètres de masse spécifiques comme le MBMS.

L’équipe SMILE forme depuis peu une équipe transverse, appelée TASQ (Télédétection Atmosphérique et Spectroscopie Quantitative) avec l’équipe télédétection du pôle "Instrumentation, Mesure et Environnement". Cette équipe transverse est rattachée à la fédération de recherche IPSL

Séminaires à venir

Vendredi 22 mars 2019, 14h00
Salle de l'atelier, Paris
New Planckian quantum phase of the Universe before Inflation: Its present day and Dark Energy implications
Sanchez, Norma
LERMA
résumé :
The physical history of the Universe is completed by including the quantum planckian and super-planckian phase before Inflation in the Standard Model of the Universe in agreement with observations. In the absence of a complete quantum theory of gravity, we start from quantum physics and its foundational milestone: the universal classical-quantum (or wave-particle) duality, which we extend to gravity and the Planck domain. A new quantum precursor phase of the Universe appears beyond the Planck scale. Relevant cosmological examples as the Cosmic Microwave Background, Inflation and Dark Energy have their precursors in this era. A whole unifying picture for the Universe epochs and their quantum precursors emerges with the cosmological constant as the vacuum energy, entropy and temperature of the Universe, clarifying the so called cosmological constant problem which once more in its rich history needed to be revised. The consequences for the deep universe surveys, and missions like Euclid will be outlined.
 
Vendredi 5 avril 2019, 14h00
Salle de l'atelier, Paris
The magnetized interstellar medium in the Galaxy through Faraday tomography of the radio sky
Andrea BRACCO
ENS
résumé :
The study of the diffuse Galactic interstellar medium (ISM) is both a
waypoint to investigate the processes that turn gas into stars and to
account for foreground contaminations in modern high-precision
cosmological probes of the Universe.

New structures in the diffuse ionized and magnetized ISM have been
recently observed through Faraday tomography of polarization data at low
radio frequencies. Although the physical origin of these structures
remains uncertain, interesting correlations with tracers of neutral ISM,
such as atomic hydrogen lines and interstellar dust polarization, have
been found. This opens an observational window on the first stages of
phase transition between diffuse/warm and denser/colder gas under the
presence of magnetic fields, allowing us to constrain their role in
structure formation in the ISM.

In my talk I will present an overview of the recent findings in the
diffuse Galactic ISM with the LOFAR radio polarization data. I will
highlight the relevance of a thorough statistical description of these
data both for Galactic studies and for modeling their impact as a
foreground to the detection of the atomic hydrogen 21cm hyperfine
transition from the Epoch of Reionization, a key step with the upcoming
Square Kilometre Array (SKA).
 
Vendredi 12 avril 2019, 14h00
Salle de l'atelier, Paris
Radiation magnetohydrodynamic models and spectral signatures of plasma flows accreting onto young stellar object
Salvatore COLOMBO
LERMA
résumé :
According to the largely accepted magnetospheric accretion scenario, classical T Tauri Stars (CTTSs) are young stars that accrete material from their circumstellar disk. The objective of my PhD project is to shed light on the processes governing the physics of the accreting plasma flows, through complete radiation magnetohydrodynamic models. In this talk, I will present the results obtained during my 18 month period in Paris.

First, I will focus on the results obtained from a 3D magnetohydrodynamical (MHD) model of a star-disk system. We simulate the effects of series of flares occurring on the surface of the disk. We observe that each flare produces a hot loops that links the star to the disk; all the loops build up a hot extended corona that irradiates the disk from above. Moreover, the flares trigger overpressure waves that travel through the disk and modify its configuration. Accretion funnels may be triggered by the flaring activity and thus contribute to the mass accretion rate of the star. The accretion columns can be perturbed by the flares. As a result, the streams are highly inhomogeneous, with a complex density structure, and clumped.

Second, I will provide the first assessment of the role of radiation effects on the dynamics and the structure of the impact region of the accreting column onto the stellar surface. In particular, we proved the existence of a radiative precursor in the pre-shock part of the accreting column. To achieve such a result, we have, for the first time, developed a Non Local Thermodynamic Equilibrium (non-LTE) radiation hydrodynamics model, which we implemented in the 3D MHD PLUTO code.”

 
Tous les séminaires...