LERMA UMR8112

Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères



Accueil > fr > Recherche > Molécules dans l’Univers > Expériences de Spectroscopie Moléculaire > Spectroscopie Moléculaire et Instrumentation Laser pour l’Environnement

Spectroscopie Moléculaire et Instrumentation Laser pour l’Environnement

par Jean-Hugues Fillion, Mathieu Bertin - publié le , mis à jour le

Membres

Christof Janssen (Chercheur CNRS - Responsable d’équipe), Corinne Boursier (MCF), Hadj Elandaloussi (Ingénieur), Pascal Jeseck (Ingénieur), Yao-Veng Té (MCF), Thomas Zanon (MCF), Dmitri Koshelev (Doctorant).

Contexte

Les molécules sont les briques constitutives de notre univers et les observer au sein de leur environnement permet de mieux comprendre de nombreux processus microscopiques, notamment ceux qui sont liés aux conditions d’apparition de la vie. L’interaction du rayonnement avec la matière est un des outils privilégiés pour sonder les molécules dans leurs différents états et environnements. Il faut donc développer des techniques adaptées et réaliser des mesures performantes.

Alignement d’une cellule d’absorption à faisceaux croisés pour des mesures de précision dans l’ozone.
C. Janssen

Domaines de recherche & Collaborations

L’activité de recherche principale de l’équipe SMILE concerne la compréhension des processus dynamiques et moléculaires qui jouent un rôle dans les atmosphères planétaires ou protoplanétaires. En utilisant des expériences de laboratoire ou des mesures atmosphériques, nous nous intéressons plus particulièrement à l’étude des rapports isotopiques et des concentrations de petites molécules (comme O3, CH4, CO, CO2, composés aromatiques, etc), ce qui renseigne sur l’origine et l’évolution de ces molécules.

Sujets de recherche plus détaillés : anomalies isotopiques de l’oxygène dans les réactions O + XO, voies de formation de l’ozone dans les atmosphères planétaires et en laboratoire, spectroscopie IR à haute résolution ou spectroscopie UV de molécules d’intérêt astrophysique ou atmosphérique, comparaison des propriétés moléculaires dans différents domaines spectraux, mesures de précision des paramètres moléculaires, observation de gaz à effet de serre par des méthodes de télédétection au sol (TCCON), et suivi de la pollution atmosphérique par méthode spectroscopique.

Ce travail fait partie de collaborations nationales (GSMA, Reims ; LiPhy, Grenoble ; LPL, Villetanneuse ; LSCE, Gif-sur-Yvette) et internationales (U. Utrecht, Pays-Bas ; U Copenhagen, Danemark ; U Wuppertal, KIT Karlsruhe, U Bremen ; Allemagne).

A l’aide de dispositifs expérimentaux, souvent développés par nous-mêmes, pour des mesures quantitatives in-situ ou à distance, nous étudions les molécules d’intérêt en phase gazeuse à différentes échelles de temps et d’espace pour des problèmes qui vont de l’origine du système solaire jusqu’aux processus qui influent sur le climat de la Terre.
Nos principaux instruments de mesure sont le spectromètre à transformée de Fourier STF-Paris, le spectromètre à diode laser MIS-TDLAS ainsi que le spectromètre asservi sur un peigne de fréquence PRESPASS en cours de développement. Nous utilisons aussi des spectromètres de masse spécifiques comme le MBMS.

L’équipe SMILE forme depuis peu une équipe transverse, appelée TASQ (Télédétection Atmosphérique et Spectroscopie Quantitative) avec l’équipe télédétection du pôle "Instrumentation, Mesure et Environnement". Cette équipe transverse est rattachée à la fédération de recherche IPSL

Séminaires à venir

Vendredi 28 septembre 2018, 14h00
Salle de l'atelier, Paris
The [CII] emission line as a molecular gas mass tracer in galaxies at low and high redshift
Anita ZANELLA
ESO
résumé :
So far the gas conditions in main-sequence galaxies at the peak of the cosmic star formation history have been mainly investigated through the CO emission lines. However, observing the CO transitions at higher redshift becomes challenging, since the lines luminosity weakens as metallicity decreases. A powerful alternative could be the [CII] emission at 158um instead: it is one of the brightest lines in the far IR regime observed in star-forming galaxies and it is the main coolant of the interstellar medium. Local studies show that the [CII] luminosity correlates with the galaxy star formation rate (SFR), although main-sequence sources and starbursts seem to have different behaviours. At higher redshift the picture is even less clear and only samples of starbursts have been analyzed so far. To remedy this situation we have observed with ALMA a sample of 10 main-sequence sources at z ~ 2 and we complemented our sample with literature data at lower and higher redshift. We found that the [CII] luminosity correlates with galaxies' molecular gas mass, independently of their depletion time, metallicity, and redshift. This lays foundations for future explorations of the interstellar medium of starbursts and galaxies at much higher redshift (z > 4).

 
Vendredi 5 octobre 2018, 14h00
Salle de l'atelier, Paris
Astrochemistry in star forming regions : new modeling approaches
Emeric BRON
IRAM/LERMA
résumé :
Star-forming regions present rich infrared and millimeter spectra emitted by the gas exposed to the feedback of young stars. This emission is increasingly used to study the star formation cycle in other galaxies, but results from a complex interplay of physical and chemical processes : chemistry in the gas and on grain surfaces, (de)excitation processes of the atoms and molecules, heating and cooling balance,... Its understanding thus requires detailed astrochemical models that include the couplings between these processes. In this talk, I will present several examples where new modeling approaches of specific processes and their couplings proved crucial to solve persistent observational riddles : from the driving role of UV irradiation in the dynamics of photodissociation regions (PDR) to the efficient reformation of molecular hydrogen in these regions.
 
Tous les séminaires...