LERMA UMR8112

Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères



Accueil > fr > Infos Pratiques > Présentation détaillée du LERMA

Présentation du LERMA

publié le

Le LERMA (Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères) est une unité mixte de recherche (UMR 8112) commune au CNRS et à 3 établissements d’enseignement supérieur : l’Observatoire de Paris (OP), Sorbonne Université (SU) et l’Université de Cergy-Pontoise (UCP). Ces 3 établissements hébergent les différentes composantes du LERMA.


Organisation du laboratoire et thématiques



Le LERMA est organisé en 4 Pôles thématiques de recherche et 1 pôle support.



Son école doctorale principale de rattachement est l’ED 127, Astronomie et Astrophysique d’Île de France, mais ses étudiants appartiennent aussi à 4 autres écoles doctorales (ED 129, 391, 564 PIF et 417).



"Galaxies et cosmologie" (OP)
- Univers primordial
- Formation et évolution des galaxies
- Amas de galaxies
- Matière noire
- Noyaux actifs, formation stellaire et rétroaction dans les galaxies


"Dynamique des milieux interstellaires et plasmas stellaires" (ENS, OP, UPMC)
- Caractérisation observationnelle du cycle interstellaire
- Modélisation de la condensation du milieu interstellaire, du gaz diffus aux étoiles et disques
- Diagnostics chimiques de la dynamique interstellaire
- Turbulence et transport radiatif dans les plasmas (circum-)stellaires


"Molécules dans l’Univers" (UPMC, UCP, OP)
- Interactions gaz-surfaces
- Processus collisionnnels en phase gazeuse
- Anomalies de rapports isotopiques et de spin nucléaires
- Paramètres moléculaires pour les atmosphères terrestre, planétaires et le milieu interstellaire


"Instrumentation et télédétection" (OP)
- Composants et sous-systèmes THz
- Instruments hétérodynes THz
- Caractérisation des atmosphères claires, nuageuses et pluvieuses
- Caractérisation des surfaces de la Terre, des planètes et des comètes
- Traitement, archivage et valorisation des données


Effectifs (Janvier 2017)
• 46 Ingénieurs et techniciens (dont 10 sous contrat)
• 10 astronomes (dont 2 émérites)
• 32 enseignants chercheurs (dont 3 émérites et 3 sous contrat)
• 21 chercheurs (dont 7 émérites)
• 7 post-doctorants
• 41 doctorants


Quelques résultats marquants récents


- Salomé, Q., Salomé, P., Combes, F., Hamer, S., Heywood , I. : 2016, <a href=’http ://www.aanda.org/articles/aa/abs/2016/02/aa26409-15/aa26409-15.html’>Star formation efficiency along the radio jet in Centaurus A, A&A 586, A45

PNG - 223.6 ko


- The earliest phase of star formation, captured through its bipolar ejection activity (Gerin et al. 2015 A&A 577, L2). La toute première étape de la formation d’une étoile, révélée par son éjection bipolaire (Gerin et al. 2015 A&A 577, L2).


- New method for measuring the diffusion and desorption energy of atoms and (Minissale, M., Congiu, E., & Dulieu, F. 2016, A&A, 585 A146). Nouvelle méthode pour mesurer l’énergie de diffusion et de désorption des atomes et radicaux (Minissale, M., Congiu, E., & Dulieu, F. 2016, A&A, 585 A146).


- Les premières mesures expérimentales directes de la photodésorption des glaces de méthanol ont montré des taux très inférieurs à ce qui était considéré jusqu’alors, et révélé la désorption de radicaux comme H3CO pouvant influencer l’astrochimie des molécules complexes.

Bertin, C. Romanzin, M. Doronin, L. Philippe, P. Jeseck, N. Ligterink, H. Linnartz, X. Michaut, and J-H. Fillion. 2016. “UV photodesorption of methanol in pure and co-rich ices : desorption rates of the intact molecule and of the photofragments”. <a href=’http ://iopscience.iop.org/article/10.3847/2041-8205/817/2/L12/meta ;jsessionid=FC5DCA0A74B28E67EDBD54FE02EB9D21.c4’>The Astrophysical Journal 817 (2). IOP Publishing : L12. doi:10.3847/2041-8205/817/2/L12.

- First results on a 1200 GHz Schottky receiver prototype for JUICE-SWI (Maestrini, A., et al 2016). Les premiers résultats sur le prototype de récepteur Schottky à 1200 GHz pour JUICE-SWI (Maestrini, A., et al 2016).

Séminaires à venir

Vendredi 31 janvier 2020, 14h00
Salle de l'atelier, Paris
The role of feedback- and accretion-driven turbulence in galaxy build-up
Pierre GUILLARD
IAP
résumé :
Cosmological models describe accurately the growth of large scale, dark matter-dominated, structures, but largely fail to reproduce the baryon content and physical properties of galaxies. Why? Essentially because the build-up of galaxies is regulated by a complex interplay between gravitational collapse, galaxy merging and feedback related to AGN and star formation, for which we still miss a robust theory. The energy released by these processes has to dissipate for gas to cool, condense, and form stars. How gas cools is thus a key to understand galaxy formation and why it such an inefficient process. In this seminar, I will discuss a few examples where turbulence driven by gas accretion, feedback, and galaxy interactions, which is largely ignored in models of galaxy formation, and captured in current simulations only over a limited range of scales, may have a major impact on galaxy and halos properties.

 
Vendredi 21 février 2020, 14h00
Salle de l'atelier, Paris
Angular momentum properties of young protostellar envelopes
Mathilde GAUDEL
LERMA
résumé :
One of the main challenges to the formation of solar-like stars is the “angular momentum problem”: if the angular momentum of the pre-stellar parent core is totally transferred to the central stellar embryo during the main accretion phase, the gravitational force can not counteract the centrifugal force and the embryo fragments prematurely before reaching the main sequence. To form a star such as our Sun, the gas of the rotating envelope needs to redistribute its angular momentum by 5 to 10 orders of magnitude before reaching the central stellar embryo. Class 0 protostars are key objects to identify the mechanisms responsible for the angular momentum redistribution : they grow by accretion of the matter from the surrounded envelope (Menv>>Mstar) extending to scales 10000 au. At the end of this cornerstone phase, most of the final stellar mass has been accreted and the embryo is surrounding by a large disk (~100 au).

In order to tackle this issue, we used high angular resolution observations (0.5’’, i.e. ~50 au) from the CALYPSO (Continuum and Lines in Young Protostellar Objects, PI: Ph. André) IRAM large program for a sample of 12 Class 0 protostars with d<400 pc. We established, for the first time homogeneously in a large sample, robust constraints on the radial distributions of specific angular momentum within protostellar envelopes in a large range of scales from ~50 to 10000 au (Gaudel et al. 2020, submitted). Two distinct regimes are revealed: a constant profile at small scales (<1600 au) and an increasing of the angular momentum at larger radii (1600?10000 au).

From the constant profile, I will discuss angular momentum conservation and disk formation as possible solutions to reconnect the angular momentum measured in the inner protostellar envelopes to what is expected in T-Tauri disks. Furthemore, velocity gradients observed on large scales (>3000 au) - that are historically used to measure the rotation of the core and quantify the angular momentum problem - are not due to pure envelope rotation. I will examine the influence of the interstellar filament dynamics (turbulence, collapse, shocks) within which protostars are buried and the imprints of the initial conditions of the pre-stellar phase in the large scales of the envelope.
 
Vendredi 17 avril 2020, 14h00
Salle de l'atelier, Paris
Patricia TISSERA
Universidad Andres Bello, Santiago, Chili
 
Tous les séminaires...