TABLE II to soole of oder being being out

	Uniform density			$r = r_0 \exp(-x^2/a^2)$		
	1 group	LSf9Ua betau	optimisation	1 group	magne un the	optimisation
SORT1	13	roups	13 0 01	9	three (9
BLOCK	67		67	41		30
SORT2	30		23	21		11
NEIGHBOURS	66		64	43		26
SORT3	12		11	13		7
DISTANCES	34		32	41		13
DENS	12		12	13		8
VISCO	93		81	105		55
GRADIENT	2		1	1		1
Total	329		304	287		160
Ratio		1.1			1.8	
Total without						
sorting	274			244		
Ratio		0.9			1.5	

Time (in ms) for Each Step of the Hydrodynamical Part of the Code

Note. The tests are performed over two density distributions using 3980 particles, a search over the 3×3 and 5×5 blocks and with the Gingold-Monaghan viscous tensor. For the exponential function the simulation window is [-7, +7] while the half intensity width is 3.5. We give the total CPU time with and without sorting for the case where the group's number is 1, for which the sortings are useless.

group, while for steeper density gradient the gain is more important with the optimised number of groups. Moreover, the program is more efficient for the gaussian distribution.

4. INTERPOLATION KERNELS

The Kernel

Each element of fluid is described by a smoothed out distribution of density, by using an interpolation function w(r, h). The construction of the interpolation kernel $w(\mathbf{r}, h)$ is guided by the requirements of accuracy, smoothness and computational efficiency [15] and then different functions have been used. Unlike the exponential function $w(r, h) = 1/8\Pi h^3 \exp(-r/h)$ chosen by Wood [19] that has nonzero derivatives in r = 0 and then overestimates the self-contribution of a particle, we prefer to build a kernel by

 $(\partial \mathbf{w}(r,h)/\partial r)_{r=0} = 0 \tag{4.1}$

- $(\partial \mathbf{w}(r,h)/\partial r)_{r=h} = 0 \tag{4.2}$
- $\mathbf{w}(r,h)_{r=h} = 0 \tag{4.3}$