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During recent decades, data from space missions have provided strong evidence of deep liq-
uid oceans underneath a thin outer icy crust on several moons of Jupiter 1, 2, particularly
Europa 3, 4. But these observations have also raised many unanswered questions regarding
the oceanic motions generated under the ice, or the mechanisms leading to the geological fea-
tures observed on Europa 5, 6. By means of direct numerical simulations of Europa’s interior,
we show here that Jupiter’s magnetic field generates a retrograde oceanic jet at the equator,
which may influence the global dynamics of Europa’s ocean and contribute to the formation
of some of its surface features by applying a unidirectional torque on Europa’s ice shell.

Whereas both radiogenic and tidal heating 8, 9 produce the energy dissipation necessary to

the melting of the ice 10, 11, motions in the ocean underneath the Jovian moons are believed to be

generated through vigorous thermal convection 12, hydrothermal plumes 13, 14 or double-diffusion

convection 15. Such flows certainly play a dominant role, but may fail at explaining some of

the observations if considered alone 9, strongly suggesting the presence of an additional physical

mechanism in these oceans. Because the magnetic dipole axis is tilted by about 10o with the

rotation axis of the gaseous giant, Jupiter’s moons also experience a time-varying magnetic field

with a rotation rate ω, inducing electrical currents in the oceanic salty water 16.

Here, we argue that as long as the phase lag between the induced field and the Jovian one is

non-zero, these induced currents naturally combine with the magnetic field to generate a Lorentz

force, leading to a weak magnetohydrodynamic (MHD) process that might play a significant role

on the global dynamics of the ocean. We therefore model Europa’s interior as a spherical shell

(mean radius R = (Ri +RE)/2, thickness h = RE −Ri) of salty water (electrical conductivity σ

and kinematic viscosity ν) confined between an inner mantle of silicate rocks (radius Ri) and an

outer layer (radius RE) of ice crust (see our Method section for a definition of the control parame-

ters). We specifically model Europa here, but our results should apply equally to subsurface oceans
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found in other Jovian moons. In order to focus on the MHD process, we first present simulations in

which thermal buoyancy is neglected. In the last part of this paper and in Supplementary Material,

we show that buoyancy only weakly modifies the magnetically-driven jet, but remains crucial to

get a full picture of the ocean dynamics.

Figure 1: Velocity field and ohmic currents. Snapshot of the azimuthal Uφ and polar Uθ compo-

nents of the velocity field (a-c) and of the ohmic currents
√
|J |2 (d). The fields are shown in the

φ, θ plane (elliptical projection) for one of our global models of Europa, Ek = 10−7, Λ = 10−1,

Pm = 10−4, h = 100km, corresponding to the highest possible value for N (see text). Ri is the

radius of the inner sphere, and h is the ocean’s thickness. Panel (b) shows that due to geostrophic

constrain, the flow exhibits a more complex structure close to the ice shell.

Fig.1 shows that the rotation of Jupiter’s magnetic field induces a planetary scale recircula-

tion, and generates strong upward and downward turbulent motions at the equator (Fig. 1c). But
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the most striking feature is the generation of a powerful oceanic jet propagating westward (Fig. 1a

and 1b), and localized in the moon’s equatorial region. The Jupiter-Europa system can therefore be

regarded as a gigantic induction electromagnetic pump, in which the salty water of the subsurface

ocean is electromagnetically pumped at a mean velocity U by the variations of the Jovian magnetic

field travelling in the horizontal plane at speed c = ωR ∼ 230m.s−1. This can be easily understood

from the induction equation:

∂B

∂t
= ∇× (U×B) +

1

µ0σ
∇2B (1)

which governs the evolution of the magnetic field inside Europa’s ocean. If one assumes that

the field can be written (BJ
r er +BJ

φeφ)ei(φ−ωt) and that the induced currents J = σ(U(r)− c)Breθ

are also travelling waves, it follows that the mean Lorentz force acting on the ocean can be written

(see Methods):

F =
σB2

0R
2(c− U)

h2
(
8 + 2µ2

0σ
2R2(c− U)2

)eϕ (2)

This expression of the Lorentz force is well known in the context of electromagnetic pumps 17, 18,

and describes how a small driving of the ocean is produced as long as σ is finite. An important fea-

ture is the phase lag φl between the Jovian field B0 and the induced one, which controls the torque

applied on the ocean. Our simulations span a large range of values of φl, but cases corresponding to

Jovian moons exhibit phase lags between 1 and 3 degrees (see supplementary Fig. 3). Accordingly,

the Lorentz force is very small, and these magnetically-driven jets are expected to be very weak

compared to the velocity of the Jovian field. In other words, Jovian moons are inefficient induction

pumps producing induced fields almost identical to the ones predicted by non-MHD studies.

Note that the dimensioned values indicated in Fig.1 are specific to the set of parameters used

here, still very far from the one relevant to real moons. Thus, in order to estimate the value of the

Lorentz force F acting on Europa’s ocean, we next compare our DNS to observations. Following

previous studies, we use Galileo measurements of Europa’s induced magnetic field to constrain the

value of the ocean’s electrical conductivity. To wit, we extensively explored our parameter space
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and compared our results to the spacecraft mission’s flyby E14. As shown in Fig.2, we found that

the best fits are obtained for σ in the range 0.3 − 3 S.m−1 if the ocean depth is h = 147km. This

value, corresponding to Rm = µ0σch comprised between 8 and 80, is in good agreement with

previous predictions 19 and implies a salinity comparable to terrestrial oceans 20.
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Figure 2: Galileo magnetometer data in the EPhiO coordinates (Europa-centered with x

along the direction of corotation, y radially inward toward Jupiter, and z parallel to Jupiter’s
rotation axis), compared to results from DNS using h = 147km. The black curves show time

evolution of magnetic field components Bx (top) and By (bottom) recorded by Galileo during the

trajectory E14, while other solid lines correspond to our DNS with various values of the electrical

conductivities σ = 2 × 10−2; 5 × 10−2; 1, 8 × 10−1; 1.8; 3.6 and 18 S.m−1. Best fits are obtained

for electrical conductivities between 0.3 and 3 S.m−1.

Quantitative predictions clearly require to identify which term balances the time-averaged

Lorentz force F at large scale. Upon azimuthal averaging, thermal buoyancy does not contribute

much, and the central question is to know which of the viscous force or the nonlinear term balances

F . As shown in Supplementary material II, a purely viscous balance (ignoring non-linear terms

and global rotation) leads to velocity of the oceanic jet such that:
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U ∝ B2
0

µ2
0ρνσωRE

, (3)

meaning that Q = U/c depends on one dimensionless number only, N = B2
0/(µ

2
0ρνσc

2).

This formula predicts a very strong equatorial jet of a few km/h when applied to Europa’s pa-

rameters. On the other hand, one may rather expect a fully inertial regime (ignoring the viscous

term), in which a significant part of the injected power per area Pohm ∼ 2B2
0/µ

3
0σ

2ch2 is evacuated

through turbulent dissipation. In this case, boundary-layer theory predicts γPohm ∼ ρCDU
3, lead-

ing to a different scaling for the jet velocity U ∼ (2γB2
0/ρCDµ

3
0σ

2ch2)1/3, where CD is the drag

coefficient and γ is the ratio between viscous and ohmic dissipation. This prediction rather leads

to jet velocities of a few mm.s−1.
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Figure 3: Magnitude of the oceanic jet. a.Predictive scaling law for the magnitude of the oceanic

jet. DNS computed for various values of the Ekman numberEk and the ocean thickness h collapse

on the law U/c ∝ N , with N = B2
0/(µ

2
0ρνσc

2) (solid black line). Estimate of N leads to an

oceanic jet of a few cm/s is for Europa (black empty circle), error bars indicating maximal and

minimal bounds on the value of eddy viscosity. b, Corresponding Joule dissipation versus the

electrical conductivity of the ocean.
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Finally, an intermediate approach is to assume an eddy viscosity νt = ν + CDUh in the

laminar formula (3). Fig.3a shows a fairly good rescaling of all simulations when Q is plotted

as a function of N using such an eddy viscosity. This suggests that molecular viscosity probably

provides unrealistically high velocities. On the other hand, because the global rotation produces a

weakening of the turbulence intensity due to the two-dimensionalization of the large-scale flow 21,

an eddy viscosity much smaller than the one observed in non-rotating turbulence is expected. In

consequence, the viscous and turbulent scalings discussed above might be regarded as maximal

and minimal bounds on the jet’s magnitude. Under the assumption that Jovian moons lie between

these two regimes, our simulations therefore predict that Europa have the most powerful jet, with

a time-averaged azimuthal flow possibly reaching a few cm.s−1, while Ganymede should exhibit a

few mm.s−1 and Callisto a nearly negligible jet (U < 1 mm.s−1)

Because tidal and radiogenic heating generate hydrothermal plumes with velocities estimated

at several cm.s−1, the electromagnetically-driven jet described here could very well be negligible

compared to those thermally-driven flow 13, 14, especially because simple estimates of the Lorentz

force gives very small values (FB ∼ 10−13 N.m−3). To address this question, we now report

in Fig.4 a simulation including thermal buoyancy, in which both N and the convective Rossby

number are such that the magnitudes of the magnetically-driven jet and the thermally-driven flows

are similar to what presumably occurs in Europa’s ocean. As expected 14, geostrophic thermal

plumes strongly dominate at small scale, with velocities around 10 cm.s−1 and typical diameters

of 30 km. The convective Rossby number Ro ∼ 3× 10−2 being too small to generate a significant

zonal wind, the same simulation with no magnetic forcing (not shown here) displays no large

scale component of the azimuthal velocity field at the equator. Europa’s zonal flow shown in

Fig.4 is therefore entirely due to Jupiter’s field. Because this magnetically-driven jet is the main

contribution to the axisymmetric time-averaged azimuthal velocity field (Uφ ∼ 2cm.s−1), it is not

suppressed by the vigorous buoyancy force, even with such a small Lorentz force. Note that a more

complex situation arises if the convective Rossby number is of order 1, due to the generation of a

strong thermal wind 12 (see our discussion in Methods and Sup. Fig.1).

We now discuss some consequences of the existence of a magnetically-driven jet on Europa.

First, even at 1mm.s−1, such a zonal flow might play a central role in the potential development of

life, by providing a time-independent westward transport of radiolytically-produced oxidants and

other biologically useful substances 22. Second, the inefficiency of the magnetic pumping (U � c)
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yields modest ohmic dissipation, expected to be around 107-108 W on Europa ( for Rm ∼ 8− 80,

see Fig.3b). Radiogenic (1011 W) or solid body tidal heating (1012 W) therefore represent a much

larger contribution. Note however that skin effect concentrates ohmic heating inside a very thin

layer close to the ice in the polar region (see Fig.4, right), such that the ohmic dissipation can

locally reach between 10−2 and 10−1 mW.m−2. This represents a non-negligible fraction of the

obliquity tidal heating 3×10−1 mW.m−2 estimated in the ocean 11, which also peaks near Europa’s

poles where water plumes are preferentially generated 23.

More important, contrary to geostrophic buoyancy plumes or time-periodic tidally-driven

flows, the magnetically-driven jet provides a constant unidirectional torque on Europa’s ice shell.

This new azimuthal force may have a direct influence on the reorientation of Europa’s ice shell in

the long term. It has been proposed that reorientation could take the form of a non-synchronous

rotation produced by tidal torques 24, or true polar wander in the case of an asymmetric tidal

heating in the ice shell 25. Non-synchronous rotation is also regularly invoked to explain some of

the geological features observed at the surface of Europa 26, and some evidences of reorientation of

the ice shell were reported 27, 28. The question of whether or not Europa’s ice shell has reoriented

in the past involves many complex phenomena (mainly based on tidal forces), but our results

suggest that the magnetic field of Jupiter, by generating a net westward motion in the ocean, can

influence any possible non-synchronous rotation of Europa. Taking into account this new effect

may therefore shed a new light on the formation of Europa’s global system of lineaments.

Note that a more complete modeling of subsurface oceans would certainly require to describe

tidal effects or topological features of the ice, and to reach more realistic Ekman numbers. In this

perspective, the upcoming space missions JUICE (JUpiter ICy moons Explorer) 29 and Europa

Clipper 30 should help constraining the future models, for instance by providing more precise

estimates on the phase lag φl of the induced field. On the other hand, global DNS of Europa’s

interior, by clarifying the dynamics generated below the ice, may already be helpful in the design

of these future spacecraft missions.
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Methods

1. Numerical modeling

We simulate Europa’s interior as an electrically conducting fluid confined in a rotating spher-

ical shell subject to an oscillatory background field B0 generated by the host planet Jupiter. In

space, such a field must satisfy ∇×B0 = 0, and mainly consist of a dipole field with a stationary

axial dipolar component and an oscillatory equatorial component. We use a spherical coordinate

system, with r the radial distance from Europa’s center, θ the polar angle measured from the North

pole and φ the azimuth angle counted positive along the eastward prograde direction. In this sys-

tem, the dimensionless non-stationary magnetic field of Jupiter B̃0 writes:

B̃0
r =

2 sin θ cos(ωt̃− φ)

r̃j
3 − 3 sin θ cosφ cosωt̃

r̃j
5 +

3γr̃

r̃j
5

[
sinωt̃− sin2 θ sinφ cos(ωt̃− φ)

]

B̃0
θ =

2 cos θ cos(ωt̃− φ)

r̃j
3 −3 cos θ cosφ cosωt̃

r̃j
5 −3γr̃

r̃j
5

[
sin θ cos θ sinφ cos(ωt̃− φ) + γr̃ cos θ cos(ωt̃− φ)

]

B̃0
φ =

2 sin(ωt̃− φ)

r̃j
3 +

3 sinφ cosωt̃

r̃j
5 +

3γr̃

r̃j
5

[
sin θ cosωt̃− sin θ sinφ sin(ωt̃− φ)− γr̃ sin(ωt̃− φ)

]
where ω is the dimensionless rotation rate of the field in the framework of Europa, r̃ is the radius

normalized by RE , and r̃j is given by r̃j =
√

1 + γ2r̃2 + 2γr̃ sin θ sinφ. The parameter γ =

RE/R = 2 × 10−3 is the ratio between Europa’s radius and the distance Jupiter-Europa. Such a

small value for γ corresponds to an almost constant magnetic field rotating in the equatorial plane,

although our simulations take into account the small variation of the field due to the fact that γ is

not exactly zero. In a few simulations (not reported here), we observed that the retrograde jet is

slightly smaller when the constant vertical component of the magnetic field is removed, an effect

that will be described elsewhere.

In Europa’s conducting ocean, the magnetic field can be written as B = B0 + b, where b is

the induced magnetic field. The oceanic saltwater is an electrically conducting fluid (conductivity

σ) satisfying Maxwell equations:

∂B

∂t
= −∇×E µ0J = ∇×B (4)
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By combining these equations with the modified Ohm’s law J = σ(E + u×B), one obtains

the induction equation which gives the evolution of the magnetic field and induced currents. When

this equation is coupled to the Navier-Stokes equation and the problem is made dimensionless,

one finally obtains magnetohydrodynamic (MHD) equations for a rotating conducting Boussinesq

fluid:

1

E

(
∂u

∂t
+ (u · ∇)u + 2ez × u +∇π

)
= ∆u +

Λ

Pm
(∇×B)×B , (5)

∂b

∂t
=

E

Pm
∆b +∇× (u× (B0 + b))− ∂B0

∂t
, (6)

∇ · b = 0 , ∇ · u = 0 , (7)

where we introduced the Ekman number (ratio of viscous to Coriolis forces), the Elsasser number

(ratio of Lorentz to Coriolis forces) and the magnetic Prandtl number (ratio between the viscosity

and the magnetic diffusivity), defined as

E = ν/(Ω0R
2
E) , Λ = B2

0/(µ0ρ0ηΩ0) , Pm = ν/η . (8)

As usual, ν, η = µ0σ, ρ0, µ0, σ denote the kinematic viscosity, the magnetic resistivity, the

density, the magnetic permeability and the electrical conductivity, all assumed to be constant. Ω0

denotes the angular rotation of Europa, which serves as reference frame. In the above, we used

the radius of the spherical domain of Europa RE as unit of length, and 1/Ω0 as unit of time. The

ocean’s thickness is varied from 100km to 147km, which are the typical values generally discussed

in the literature 20. Both the ocean-mantle and ocean-ice boundaries are assumed to be electrically

insulating and isothermal. No-slip boundary conditions for the velocity field are used, and internal

heat sources that may be generated by tides or libration are neglected.

Alternatively, one may also define the Hartman number Ha = B0h
√
σ/ρν, which compares

the Lorentz force to the viscous force, and the magnetic Reynolds number Rm = ωREhµ0σ,

which measures the ratio between induction and diffusion. Supplementary table 1 shows that our

typical Ekman numbers are many order of magnitudes larger than the value expected in Jovian

moons, but Europa’s Hartmann and magnetic Reynolds numbers are correctly reproduced by our
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simulations. This means that our DNS correctly describe the electromagnetic processes occurring

in the ocean, but probably underestimate the effect of global rotation on the flow structure. This

underestimate of the global rotation also forces us to use larger values of the Elsasser number.

Similarly, the weak magnetic Prandtl number used in the simulations implies that the small scale

turbulence of the ocean is not fully resolved, although large values of Pm may also reflects effects

due to turbulent diffusivities. Finally, our Rayleigh numbers are chosen to select a convective

Rossby number Ro =
√
RaE2/Pr in the range estimated for Europa12. This ensures that the

size and velocities of thermal plumes are correctly reproduced, and that Europa’s ratio between

the Lorentz and Buoyancy forces is correctly reproduced. Interestingly, both the magnetic Ekman

number Em = E/Pm which appears in the induction equation (6) and the modified Elsasser

parameter Λm = Λ/Pm in equation (5) are correctly reproduced in the numerical model. This

similarity in the force balance may explain why our model successfully reproduce several aspects

of Europa despite strong differences in E, Pm and Λ. In terms of dimensional units, apart from

viscous and thermal diffusivities which are orders of magnitude too large compared to Europa’s

ocean, all other parameters are correctly reproduced by the simulations: ocean’s thickness h is

either 100 or 147 km, gravitational acceleration is g = 1, 3m.s−2, thermal expansion coefficient

α = 3× 10−4K−1, the global rotation rate is Ω = 2, 1× 10−5 s−1, the magnetic field rotation rate

is ω = 1, 6× 10−4s−1 and the electrical conductivity is σ ∼ 1S.m−1.

The numerical benchmarked31 solver used to compute MHD equations is the semi-spectral

code PaRoDy32. The code uses a poloidal/toroidal expansion and a pseudo-spectral spherical har-

monic expansion, while the radial discretization is based on finite differences on a stretched grid

(allowing for a parallelization by radial domain decomposition). The time integration is performed

using a Crank-Nicholson scheme for diffusion terms and an Adams-Bashforth scheme for other

terms. For the lowest Ekman numbers reported in this paper, we use 288 points in the radial direc-

tion and 305 spherical harmonic modes, corresponding to 460 points in the θ direction and 1024

points in the azimuthal direction φ.

2. Galileo measurements

If we assume that the ice crust is much thinner than the ocean depth and if we neglect mag-

netospheric plasma effects, the magnitude and phase of the induced field measured by the Galileo

spacecraft only depends on the size of the conducting material (ocean’s depth h), the size of the

moon RE , the phase speed c = ωRE of the Jovian field, and the electrical properties of the ocean.
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In the literature, the ratio ωµ0σR
2
E between the skin depth and the moon’s radius is generally used

to quantify the induction within the ocean. In the present case, we rather introduce the phase speed

c = ωRE of the magnetic field and use the magnetic Reynolds number Rm = chµ0σ, which is

more natural for describing magnetohydrodynamic effects in a channel of thickness h. Using this

definition, Rm can also be regarded as the ratio between some typical length scale
√
REh and the

skin depth over which electrical currents penetrate the ocean.

Fig.2 has been obtained by performing approximately 100 DNS with various values of Ek,

Λ and Pm, corresponding to different values of Rm. For each of these simulations, we solved

Laplace equation outside our spherical domain to compute the magnetic field beyond the ocean,

simulated Galileo spacecraft trajectories and compared to space mission data.During its mission,

Galileo made multiple flybys of Europa on several orbits around Jupiter (labeled E4, E11, E12,

E14, E15, E17 and E19) if we restrict to encounters for which magnetometer data were acquired.

Magnetic measurements from encounters E11, E12, E15, E17, and E19, exhibit short-scale fluc-

tuations probably generated by disturbances due to the plasma currents from the Alfven wings.

Following previous authors33, we therefore restricted our analysis to the remaining encounters E14

and E4, which are closer to the equatorial plane, outside of the Jovian current sheet. As the two

flybys provide the same conclusion (best fit obtained for σ ∼ 1S/m), we only show here the

E14 flyby. Similarly to previous authors, we use the so-called Ephio coordinate system. Fig.2

was obtained with simulations performed at a fixed value of the aspect ratio (corresponding to an

ocean depth of h = 142 km). Note that local magnetospheric plasma disturbances, by reducing

the time offset between imposed and induced fields, are expected to improve the agreement with

observations33.

3. Simple reduced model

The behavior observed in our simulations can be understood by studying the equatorial re-

gion of Europa, where the magnitude of the oceanic jet is significant. In this region, Jupiter’s

magnetic field is well approximated by an homogeneous horizontal magnetic field rotating in the

φ-direction at constant speed. For simplicity, let us assume that both induced magnetic field and

electrical currents can be regarded as traveling waves propagating in the azimuthal direction, such

that the total magnetic field writes:
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B = (Br(r)er +Bφ(r)eφ)ei(φ−ωt), (9)

which includes both Jovian and induced magnetic fields. As we focus on the equatorial plane,

the θ-dependance of the fields is ignored, and induced currents are assumed to be only along the

θ-direction. Similarly, we seek for a simplified velocity field U = Uφ(r)eφ. The ocean is confined

in the spherical gap between r = Ri and r = Ri + h = RE , where h is the thickness of the ocean.

In this reduced model, we also ignore the non-time varying axial component of Jupiter’s field, as

it would require to seek for more complicated velocity and magnetic fields.

When using the vector potential such that B = ∇×(A(r)ei(φ−ωt)eθ) , the induction equation

becomes:

−iωA+
iA

r sin θ
U(r) =

1

µ0σ

[
1

r2
∂(r2∂rA)

∂r
− 2A

r2 sin2 θ

]
(10)

At the boundaries r = RE , the magnetic field Bφ is required to match the applied Jovian

magnetic field, Bφ(Ri, RE) = B0, where B0 represents the magnetic field of Jupiter at Europa’s

location. This boundary condition is similar to what is generally done in such electromagnetically-

driven flows 17,34. At the lower boundary r = Ri, we use Bφ(Ri, RE) = 0, since the time-varying

magnetic field wave can not diffuse into the interior due to the large Rm.

In the limit of an ocean thickness small compared to the moon’s radius and by focusing on

the jet very close to the equatorial plane (θ ∼ π/2), the induction equation then becomes:

∂rrA =
2

R2

[
1− iµ0σR

2
(c− U(r))

]
A (11)

where R = (Ri + RE)/2 is the mean radius of the shell and c = ωR is the phase speed

of the traveling magnetic field of Jupiter. This equation is associated with the boundary con-

dition ∂rA|RE
= B0. Similarly, the electrical currents induced in the channel are given by

j = 1
µ0
∇×B = − 1

µ0
∆A. Using equation (11), the electrical currents read :

j = i
σA

R
(c− U(r))eθ = σ(U(r)− c)Breθ (12)
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where Br is the radial component of the magnetic field. A closed system of equations is

obtained by writing the φ-component of the time-averaged Lorentz force:

F = −1

2
IRe{j∗Br} =

σ

2R2
(c− U(r))|A(r)|2 (13)

By using this expression of the Lorentz force in the time-averaged Navier-Stokes equation,

one finally obtains the additional equation:

∂rrU = − σ

2ρνR2
(c− U(r))|A|2, (14)

4. Derivation of the scaling law

Equations (11) and (14) can be easily solved numerically and compared to our DNS. How-

ever, most of the results reported here can be understood without such a numerical integration.

Under the so called ’block velocity’ assumption 17,34, we suppose that the velocity U is constant

across the gap, except in some boundary layers that we will ignore for now. In this case, equation

(11) can be integrated:

[∂rA]Ro

Ri
=

2

R2

(
1− iµ0σR

2
(c− U)

) ∫ RE

Ri

Adr (15)

By using boundary conditions for the potential vector, we obtain an expression for the spa-

tially averaged magnetic field Br = −
∫
iA/(hR)dr :

Br = −1

h

∫ RE

Ri

(
iA

R
)dr =

−iB0

2χ
(
1− iµ0σR

2
(c− U)

) (16)

By combining this averaged expression of Br with (12) and (13), we obtain a simple expres-

sion for the Lorentz force acting on the ocean:

F =
σB2

0c(1−Q)

8χ2 + 2Rm2(1−Q)2
eϕ (17)

where χ = h/R is the aspect ratio and Q = U/c is the velocity of the ocean in the mid-

plane normalized by the traveling speed of the Jovian field. We have also introduced the magnetic
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Reynolds number Rm = cµ0σh. A simple balance between the Lorentz force and the viscous

force therefore suggest :

U ∝ σB2
0c(1−Q)

ρν (8χ2 + 2Rm2(1−Q)2)
(18)

Finally, note that in Jovian moons, it is obvious than the ocean always flows with a typical

velocity much smaller than the propagation speed of the Jovian field c = 230m.s−1, independently

of the source of motions. It is thus reasonable to take the limit Q = U/c� 1 in the above expres-

sion. In addition, Galileo measurements suggest electrical conductivity around σ ∼ 1S/m, such

that the magnetic Reynolds number is much larger than unity. The previous expression therefore

simplifies to:

U ∝ B2
0

µ2
0ρνσc

(19)

Alternatively, this expression can also be written in dimensionless form Q ∝ N , where

N = B2
0/(µ

2
0ρνσc

2) is a new dimensionless control parameter for the ocean’s evolution. As

shown in Fig.3a of the main manuscript, all our DNS collapse on this predictive scaling law.

Note that the coefficient of proportionality can not be deduced from the reduced model derived

here, as it involves details on velocity field fluctuations, geometry of the considered channel, etc.

However, the rescaling of our DNS on a single curve provides an estimate of this coefficient, our

data suggesting Q ∼ 0.2N (solid black line).

Even if a fairly good agreement between the model and the DNS is obtained here, note that

the present model ignores several effects, such as the global rotation of the planet or other driving

forces. In addition, as discussed in the main part of the article, the huge turbulent fluctuations

expected at large Reynolds number may strongly change the dissipation, such that the ν must be

understood as an eddy viscosity. Because the Ekman number is far too large and the velocity

fluctuations remain moderate in our simulations, it is relatively difficult to estimate the value of

eddy viscosity in Europa’s ocean. However, rotating tank experiments 21 have recently shown

that global rotation, by producing a two-dimensionalization of the flow, strongly reduces friction.

Due to Proudman-Taylor constrain, only the 3D part of the flow participate to the eddy viscosity

νt ∼ CDU3DH , leading to values significantly larger than the non-rotating case. Although it is
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speculative, we argue that such a turbulent viscosity might lead to flows of a few cm/s or so.

5. Comparison with tidally-driven and thermally-driven flows

Tidal effects: While orbit eccentricity produces flexing of the solid parts of the moon and pro-

vides most of the heat that sustains the ocean 8, the flow response to tidal forcing can involve either

eccentricity or obliquity. In the first case, the tidal dissipation strongly depends on the ocean thick-

ness h, and is associated to time-dependent cellular flows with velocities inversely proportional to

h, leading to small velocities of a few mm.s−1 for Europa. When obliquity of the orbit is taken

into account, flow velocities of about 9 cm.s−1 may be generated, although such large flows require

resonant excitation of Rossby waves 11.

Thermal buoyancy: Radiogenic flux of roughly 4 mW.m−2 from the silicate interior also con-

tributes to the heating of the subsurface ocean, and generates hydrothermal plumes ascending from

the seafloor. These plumes merely depends on the ration between fluid momentum transport and

Coriolis forces, measured by the so-called natural Rossby number Ro = (Bf−3)1/4/h, in which

B is the buoyancy flux emitted by the seafloor source and f = 2Ω sin(θ) the Coriolis parame-

ter. While some authors suggested a seafloor heat flux around Q ∼ 0.1 GW35, others rather used

Q ∼ 1 − 10GW7, leading to Rossby numbers in the range Ro ∼ 0.01 − 0.1. The corresponding

velocities associated with hydrothermal plumes are predicted 13, 14 to lie between 0.9cm.s−1 and

5cm.s−1. In a more recent paper12, it was suggested that Rossby number may reach even larger

values, Ro > 1. In this extreme case, one may expect quasi-3D turbulent convection in the ocean

producing retrograde zonal flows of about 250cm.s−1, comparable to the velocities produced by

our MHD mechanism.

In conclusion, the magnetically-driven jet, with velocities comprised between 1 and 100

cm.−1, is a non-negligible source of motions in Europa’s ocean. Moreover, if the convective Rossby

number is smaller than one, this may be the only contribution to the time-averaged axisymmetric

zonal flow, which may significantly affects the non-synchronous rotation of the moon.

6. Numerical simulations including thermal buoyancy

The above discussion suggests that the mechanical flow response (of a few mm.s−1) to tidal

forces may be neglected, whereas hydrothermal plumes due to radiogenic heating from the man-

tle remain crucial. Therefore, a full numerical model of Jovian moons should at least combine
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magnetohydrodynamical effects and thermal buoyancy due to radiogenic heating.

In some of our DNS, previous MHD equations have therefore been coupled to thermal

Boussinesq convection with fixed isothermal boundary conditions, introducing the Rayleigh num-

ber Ra = αg∆TR3/(νκ) and the thermal Prandtl number Pr = ν/κ, where ∆T is the unstable

superadiabatic gradient imposed through the ocean, κ is the thermal diffusivity, g is the grav-

ity, and α is the thermal expansion coefficient. We can also define a convective Rossby number

Roc =
√
RaE2/Pr, similar to the natural Rossby number but based on the temperature contrast.

Because a complete thermal model of Europa is beyond the scope of the present paper, we only dis-

cuss the effect of a thermal gradient imposed between inner and outer spheres and ignore internal

heat source as produced by tidal heating.

Typical values for Europa have been estimated by various authors12, 13, suggesting Pr ∼ 12

and Ra ∼ 1020 − 1023, corresponding to convective Rossby numbers between 0.01 and 1. As

usual, numerical limitations do not allow us to reproduce the low viscosity of Europa’s ocean. We

present results obtained for larger values of Ekman and smaller Rayleigh numbers, E = 10−5 and

Rayleigh numbers ranging from Ra ∼ 107 to Ra ∼ 1010, such that we reproduce the range of

Rossby numbers, Ro ∼ 0.01− 1 relevant to Europa.

Supplementary Figure 1 shows snapshots of the azimuthal velocity field at mid-height from

the seafloor obtained for E = 10−5, Λ = 10−1 and Pm = 10−3 and Pr = 12, for 5 different

values of the Rayleigh number. For numerical convenience, note that contrary to Fig. 4, this

set of parameters corresponds to the upper bound of the magnitude of the jet (viscous scaling),

although the same conclusion can be drawn for both regimes. It shows an increase of small scale

convection patterns as the Rayleigh number is increased (from quasi-2D columnar plumes to 3D

convection). At small Rossby number (Ro < 1), thermal convection only weakly modifies the

large scale average structure of the MHD jet. Interestingly, for Ro > 0.4, thermal convection

also generates a retrograde zonal flow near the equatorial region of the outer sphere, which even

reinforces the magnetically-driven jet.

As long as the convective Rossby number is smaller than unity, panel (f) shows that the large

scale flow is always dominated by the magnetically-induced retrograde jet. Because the Rossby

number for Europa is believed to lie in this limit Ro < 1, most of the results reported in the paper

are almost unaffected by the presence of thermal buoyancy. Note however that our simulations
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predict that the small scale part of the flow may be dominated by rotating thermal plumes with

typical velocities of a few cm.s−1. Finally, if the convective Rossby number is as large as suggested

by Soderlund et al12 (Ro ∼ 1), a retrograde jet of several hundreds of cm/s is generated, nearly

three times larger than the magnetically-driven jet. Similarly, supplementary figure 2 shows that

Joule heating is only weakly modified by the presence of thermal convection.

Data availability The data that support the plots within this paper and other findings of this study are

available from the corresponding author C. Gissinger upon reasonable request.
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