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ARTICLE INFO ABSTRACT

We investigate the nature of the dynamo bifurcation in a configuration applicable to the Earth’s liquid outer
core, i.e. in a rotating spherical shell with thermally driven motions with no-slip boundaries. Unlike in previous
studies on dynamo bifurcations, the control parameters have been varied significantly in order to deduce general
tendencies. Numerical studies on the stability domain of dipolar magnetic fields found a dichotomy between
non-reversing dipole-dominated dynamos and the reversing non-dipole-dominated multipolar solutions. We
show that, by considering weak initial fields, the above transition disappears and is replaced by a region of
bistability for which dipolar and multipolar dynamos coexist. Such a result was also observed in models with
free-slip boundaries in which the geostrophic zonal flow can develop and participate to the dynamo mechanism
for non-dipolar fields. We show that a similar process develops in no-slip models when viscous effects are
reduced sufficiently.

The following three regimes are distinguished: (i) Close to the onset of convection (Ra.) with only the most
critical convective mode (wave number) being present, dynamos set in supercritically in the Ekman number
regime explored here and are dipole-dominated. Larger critical magnetic Reynolds numbers indicate that they
are particularly inefficient. (ii) in the range 3 < Ra/Ra, < Ra,, the bifurcations are subcritical and only dipole-
dominated dynamos exist. (iii) in the turbulent regime (Ra/Ra. > 10), the relative importance of zonal flows
increases with Ra in non-magnetic models. The field topology depends on the magnitude of the initial magnetic
field. The dipolar branch has a subcritical behavior whereas the multipolar branch has a supercritical behavior.
By approaching more realistic parameters, the extension of this bistable regime increases. A hysteretic behavior
questions the common interpretation for geomagnetic reversals.

Far above the dynamo threshold (by increasing the magnetic Prandtl number), Lorentz forces contribute to
the first order force balance, as predicted for planetary dynamos. When Ra is sufficiently high, dipolar fields
affect significantly the flow speed, the flow structure and heat transfer which is reduced by the Lorentz force
regardless of the field strength. This physical regime seems to be relevant for studying geomagnetic processes.
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1. Introduction

The mechanism whereby planets maintain magnetic fields against
ohmic decay is one of the longest standing problems in science. It is
commonly believed that the magnetic field is generated by electro-
motive forces driven by electrically conducting fluid motions in celes-
tial bodies, namely dynamo action (Moffatt, 1978; Dormy and Soward,
2007). Dynamo action is considered to be responsible for the presence
of magnetic activity for a large variety of astrophysical objects in-
cluding planets, stars and galaxies. Planetary magnetic fields result
from dynamo action thought to be driven by convection in electrically
conducting fluid regions. Convection in these systems is strongly

influenced by the Coriolis force resulting from global planetary rota-
tion.

Since the time of the first fully three-dimensional numerical models
(e.g. Glatzmaier and Roberts, 1995), there have been significant ad-
vances in our understanding of the fluid dynamics of planetary cores.
Many features of the Earth’s magnetic field have been reproduced nu-
merically (Christensen et al., 1998; Christensen et al., 1999; Busse et al.,
1998; Takahashi et al., 2005; Christensen and Wicht, 2007) even
though realistic parameters differ by several orders of magnitude in
direct numerical simulations. For instance, the Ekman number for the
Earth’s outer core is approximately E = 10~!° whereas E > 107 can be
considered in numerical models (see below for a complete definition of
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this dimensionless number). Possible field generation mechanisms in
planetary conducting zones have been proposed by Olson et al. (1999)
and dynamo coefficients have been calculated in geodynamo models
(Schrinner et al., 2007, 2012) using the test-field method (Schrinner
et al., 2005). Progress both in numerical methods as well as in parallel
computer architecture has made it possible to explore an extensive
parameters space in order to deduce the physical ingredients re-
sponsible for the dominance of the axial dipole field (Christensen and
Aubert, 2006; King et al., 2010; Schrinner et al., 2012; Soderlund et al.,
2012).

From numerical data and theoretical arguments, Christensen and
Aubert (2006) have proposed scaling laws in order to predict ob-
servables as the magnitude of velocity field and magnetic field for
planets (see also Stelzer and Jackson, 2013) and for rapidly rotating
stars (Christensen et al., 2009). However, their predictive character and
their relevance have been recently questioned by Oruba and Dormy
(2014) and Tilgner (2014). In addition, according to several recent
numerical studies (King et al., 2010; Soderlund et al., 2012; King and
Buffett, 2013), viscosity could play an important role in numerical re-
sults. Numerical simulations often explore a physical regime in which
viscous effects would dominate inertia whereas the opposite situation is
believed to hold in planetary interiors. According to Davidson (2014),
helical motions responsible for dynamo processes of dipolar mor-
phology in simulations would result from the importance of viscosity.
The relevance of numerical results to improve our knowledge of pla-
netary dynamos is still a question of debate that we address in parti-
cular in this paper.

Recently, extreme runs have been carried out in order to reduce the
effects of viscosity (Soderlund et al., 2015; Yadav et al., 2016; Schaeffer
et al., 2017). In these runs, the flow is strongly affected by the Lorentz
force which appears as one of the dominant forces, i.e. Lorentz and
Coriolis forces would comprise the leading-order force balance (MAC
balance). Aubert et al. (2017) have reached very low values of the
large-scale viscosity by using a different numerical approach (large-
eddy simulations) and they argue for a continuous path connecting
today’s simulations with planetary interiors. Aurnou and King (2017)
argue that the influence of the Lorentz force depends on the scale and
global scale force balance would be geostrophic. Convection would be
influenced by the magnetic field only below a certain scale in simula-
tions and in the Earth’s outer core. In this paper, we show that the
impact of the Lorentz force depends on the buoyant forcing in our da-
taset.

Observations and numerical simulations indicate that rapid global
rotation and thus the ordering influence of the Coriolis force is of major
importance for the generation of coherent magnetic fields (Stellmach
and Hansen, 2004; Képyla et al., 2009; Brown et al., 2010). Kutzner and
Christensen (2002) demonstrated the existence of a dipolar and a
multipolar dynamo regime and Christensen and Aubert (2006) showed
that the transition between the two regimes is governed by a local
Rossby number (Ro,), i.e. by the influence of inertia relative to the
Coriolis force. Similar results were reported by Sreenivasan and Jones
(2006), as well. Dipolar models were found for small Rossby numbers;
they are separated by a fairly sharp regime boundary from multipolar
models, where inertia is more important. The models transition from a
dipolar morphology to a multipolar state as the local Rossby number
increases above a certain value (Ro, > 0.1). By considering different
initial conditions for the magnetic field, we will show below that
multipolar dynamos can be generated for local Rossby numbers lower
than 0.1 even if no-slip boundaries are used.

Paleomagnetic measurements have allowed us to reconstruct the
dynamics of the magnetic field. Irregularly over geologic time, the
Earth’s magnetic polarity has changed sign and such reversals have
occured several hundred times during the past 160 million years.
Glatzmaier and Roberts (1995) were the first to simulate such events
numerically. Olson and Christensen (2006) have inferred some of the
physical causes associated with field reversals in planetary interiors
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from numerical studies. Reversals would result from the importance of
inertia relative to the Coriolis force. If the local Rossby number is close
to the transitional value (Ro, ~ 0.1), the dynamos are dipole-dominated
and exhibit sporadic polarity reversals. In the light of our results, we
will question the explanation proposed by Olson and Christensen
(2006) for geomagnetic reversals.

By considering lower Ekman numbers and different magnetic
Prandtl numbers, we extend the study by Morin and Dormy (2009).
Decreasing the Ekman number allows one to explore smaller magnetic
Prandtl numbers as highlighted by Christensen and Aubert (2006). It is
of primary interest to understand dynamo bifurcations for very low E
and Pm as these numbers are known to be 10~'° and 10~° respectively, in
the Earth’s outer core and of similar order of magnitude in other pla-
netary dynamo regions or in rapidly rotating stellar interiors.

In Section 2, we present the differential equations and input/output
parameters. Section 3 is devoted to a hydrodynamic study and a kine-
matic study in which the dynamo threshold as a function of hydro-
dynamic forcing is determined for simple cases. A systematic study of
the dynamo bifurcation is addressed in Section 4 and we discuss these
results in Section 5. In Section 6, we focus on the action of the fields on
the flow through the Lorentz force. We also discuss the physical regimes
which can give rise to dipolar dynamos. We conclude and apply our
results to planetary magnetism in Section 7.

2. Equations and dimensionless parameters

Our dynamo models are solutions of the MHD-equations for a con-
ducting Boussinesq fluid in a rotating spherical shell. The fluid motion
is driven by convection due to an imposed temperature difference, AT
(where T denotes the temperature), between the inner and the outer
shell boundaries. The fundamental length scale of our models is the
shell width L, we scale time by L?/v, with v the kinematic viscosity, and
temperature is scaled by AT and the magnetic field is considered in
units of \/ounQ, with ¢ denoting the density, u the magnetic perme-
ability, n the magnetic diffusivity and Q the rotation rate. With these
units, the dimensionless momentum, temperature and induction equa-
tions are

+2ZXV+ VP:Ra£T+

E(@ + vV )V—VZV)
ot T,
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—(V x B) X B,
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Here, the unit vector 7 indicates the direction of the rotation axis.
We also note that the velocity field v and the magnetic field B are
solenoidal. The system of equations is governed by four dimensionless
parameters, the Ekman number E = v/QIL?, the (modified) Rayleigh
number Ra = arg,ATL/vQ, the Prandtl number Pr=v/x, and the
magnetic Prandtl number Pm = v/7. In these definitions, ar stands for
the thermal expansion coefficient, g, is the gravitational acceleration at
the outer boundary, and x is the thermal diffusivity. Another control
parameter is the aspect ratio of the shell defined as the ratio of the inner
to the outer shell radius, y = r/r,. It determines the width of the con-
vection zone and is fixed in our study at 0.35. The mechanical boundary
conditions are no-slip at both boundaries. Furthermore, the magnetic
field matches a potential field outside the fluid shell and fixed tem-
peratures are prescribed at both boundaries.

Some of the models investigated here exhibit bistability where the
solution depends on the initial conditions for the magnetic field. A
strong (A ~ 10) initial dipolar field gives rise to a dipolar solution
whereas a multipolar solution is obtained when a weak seed field is
considered as an initial condition (see Section 4). Some calculations
were started from a numerical solution with slightly different
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Fig. 1. Relative importance of zonal flows measured by Vz in hydrodynamical simulations as a function of Roy (panel (a)) and Ra (panel (b)).

parameters to test for hysteresis. In the bistable regime, models re-
sulting from simulations with an initially weak magnetic field are re-
ferred to here as multipolar models and are distinguished from dipolar
solutions initially started with a strong magnetic field.

The numerical solver used to compute solutions of equations ()
(1)-(3) is PaRoDy (Dormy et al., 1998, and further developments). The
numerical method is similar to that described in Glatzmaier (1984)
except for the radial discretisation, which is treated with a finite dif-
ference scheme in physical space on a non-uniform grid denser close to
the boundaries. Moreover, the pressure term has been eliminated by
considering the double curl of the momentum equation.

Our numerical dynamo-models are characterized by non-dimen-
sional output parameters. Dimensionless measures for the flow velocity
are the magnetic Reynolds number, Rm = v,sL/n, and the Rossby
number, Ro = v,/ QL. In both definitions, v, stands for the rms ve-
locity of the flow. Similarly, B,,s denotes the rms magnetic field
strength. We also measure the local Rossby number as introduced by
Christensen and Aubert (2006), Ro, = Ro ¢/m, based on the mean har-
monic degree ¢ of the velocity field,
2=y €<(VE'(_‘:)£>.

7 (v-v) 4)

The angle brackets in (4) denote an average over time and (v), is the
velocity component at degree ¢. Another definition relevant for stress-
free mechanical boundaries is given by Schrinner et al. (2012) (see their
Appendix). In this definition, the axisymmetric zonal contribution v3* is
not taken into account in the calculation of the Rossby number which
becomes a convective Rossby number based on the convective velocity
Ve = Vims—V* and in the calculation of the mean harmonic degree £ of
the convective flow v.. (v,v,) corresponds to the non-zonal (or con-
vective) energy of the flow. We also define the convective Reynolds
number Re. = v,L/v and the zonal Raynolds number Re, = vg" L/v.

The magnetic field strength is measured by the dimensionless
Lorentz number, Lo = Biys/((/ou QL), and the classical Elsasser number
A = B2, /Qoun. They are related through A = Lo?Pm/E. Moreover,
following Christensen and Aubert (2006), we characterize the geometry
of the magnetic field by the relative dipole field strength, fj;, or dipo-
larity, which is defined as the ratio of the average field strength of the
dipole field to the field strength in harmonic degrees ¢ < 12 at the outer
boundary.

A non-dimensional measure for the heat transport is given by the
Nusselt number, Nu, defined as the ratio of the total heat flow Q and the
conducted heat flow, Quong = 477, 1;9ck AT /D with the heat capacity c. In
our models, Nu = Q/Qcng is measured at the outer boundary and
averaged in time.

Typical resolutions are 288 points in the radial direction (up to 384
points). The spectral decomposition is truncated at a hundred modes
(up t0 ljpgy = Mgy = 256), in order to observe a drop by a factor of 100
or more for the kinetic and the magnetic energy spectra of [ and m from
the maximum to the energy cut-off [, and 1.

3. Kinematic study

In this section, we study the ability of convection motions in rapidly
rotating spherical shells to drive a dynamo. With a weak initial mag-
netic field, the Lorentz force does not affect the flow. In this case, the
flow is called kinematically unstable when the initial field grows ex-
ponentially. This configuration is obtained if the magnetic Reynolds
number is higher than a critical value Rm,.. Otherwise, exponential
decay is observed. We determine the evolution of Rm, with the control
parameters Ra and E. In this section, the kinematic phase is numerically
considered by explicitly ignoring the Lorentz force in the MHD equa-
tions.

3.1. Convection in rapidly rotating spherical shells

We shortly review some important hydrodynamical results and we
highlight in particular some properties of flows on which dipolar so-
lutions can set in (Ro, < 0.12) (see Fig. 1(a)). Gastine et al. (2016)
present a recent study of convection in rotating spherical shells. How-
ever, the relative amplitude of zonal flows is not explicitly addressed.

Small-scale convection transfers kinetic energy via nonlinear
Reynolds stresses into the mean zonal flow, the magnitude of which is
measured by V; = EX'/Egy where EX denotes the axisymmetric tor-
oidal part of the mean kinetic energy Exn. To obtain a Reynolds stress
effect, a high degree of correlation is required between the cylindrically
radial and azimuthal velocity components of the small-scale eddies. The
dynamics of convection columns is intimately connected for Prandtl
numbers of the order unity or less with the differential rotation that is
partly generated by their Reynolds stresses especially when free-slip
boundaries are used (Grote et al., 2000; Christensen, 2002; Busse and
Simitev, 2006). The use of rigid boundaries is known to dramatically
affect the magnitude of zonal flows in numerical models and in ex-
periments (Aubert et al., 2001; Aubert, 2005; Gillet and Jones, 2006).
As the Ekman number decreases, the effect of the boundary layer dis-
sipation decreases and the energy of zonal flows becomes important
(see Fig. 1(b)). Asymptotic studies have shown that zonal flows could
be important in the Earth’s outer core. The turbulent regime is parti-
cularly interesting for planetary applications where E < 1,Re > 1 and
Ro < 1. In geodynamo simulations, the Reynolds number would never
be large enough in order to ignore viscous effects in the interior of the
shell, in contrast with what is expected in planetary interiors. However,
our hydrodynamical results suggest that zonal flows can have a sig-
nificant part of the kinetic energy in geodynamo simulations. We show
in our MHD study that zonal flows affect the nature of the dynamo
bifurcation and they allow the existence of a bistable regime.

In rotating spherical shells, the flow is dominated by columnar
vortices aligned with the rotation axis distributed around the solid
inner core close to the onset of convection. Heat transfer occurs pre-
ferentially in the equatorial plane in this regime. These rolls exhibit
properties of thermal Rossby waves in that they are drifting in the
prograde azimuthal direction. Slightly above the supercriticality (in RI),
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Fig. 2. Evolution of the zonal Reynolds number Re; as a function of the convective
Reynolds Re, in hydrodynamic with
Ra > 10Ra.,Pr =1 and different Ekman numbers. The line gies the 1.3 scaling which
appears to fit the low Pr data according to Gillet and Jones (2006). We note that this
scaling law also describes our dataset with Pr = 1 in the turbulent regime.

number direct numerical simulations

the Coriolis force and the pressure force dominate and they organize the
flow in columns parallel to the rotation axis (Proudman-Taylor con-
straint). Such a flow structure is shown in Fig. 3 (left panels). The he-
licity He = (7«(? X V)), is predominantly positive in the southern
hemisphere and negative in the north. In this case, the brackets (...)
denote an average over time and spatial directions.

Close to the onset of convection (Ra < 3Ra.: RI), only one convec-
tion mode develops or dominates and the magnitude of V; is limited
(below 0.2, see Fig. 1(b)). The convection mode which develops for the
lowest Rayleigh number when the other control parameters are fixed, is
called the critical mode and this mode has the azimuthal symmetry m,.
This situation is typical for convection in RI. The increase of Ra allows
to extend convection cells into the whole volume.

For higher supercriticalities (3Ra, < Ra < 10Ra.), V7 decreases as Ra
increases. The flow becomes time dependent and its equatorial sym-
metry is less and less pronounced. Additional convection modes
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develop and join the critical one. The fluid inside the tangent cylinder is
still nearly stagnant. Otherwise, convection is vigorous and almost
space-filling. The size of convective vortices becomes thinner in the
azimuthal direction (see Fig. 3, middle panels). Helicity which has only
one sign in each hemisphere in RI, varies along the rotation axis in RII
and it changes sign with the emergence of helical motions close to the
solid inner core.

At sufficiently supercritical Rayleigh numbers (Ra > 10Ra,: RIII), V;
increases with Ra (see Fig. 1(b)), i.e. zonal flows play an increasingly
important role as buoyant forcing increases. Aubert et al. (2001) have
also mentioned in their experimental and theoretical study that the
turbulent scaling fits their data (the flow speed and the typical length
scale) when Ra > 10Ra, for both fluids: gallium (Pr = 0.025) and water
(Pr = 7) (see their Figs. 10 and 11). Convection develops in RIII in the
polar regions as well. Fluid motions in these regions interact with the
turbulent convection outside the tangent cylinder. In this turbulent
regime (RII), convection is organized as a set of thin plume sheets
rather than columnar cells. The pattern still drifts, but this is no longer
the consequence of wave propagation, but of a real zonal circulation
that can be strong when compared to convective velocity (see Aubert
et al. (2001) and references therein). Reynolds stresses (inertial effects)
and thermal wind forcing generate large-scale zonal flows even if the
Coriolis force is still dominant (Ro, < 0.12).

Fig. 1(a) shows that lowering the Ekman number promotes the de-
velopment of zonal flows for lower Ro,. The typical flow structure for
convection motions in RIII is given in Fig. 3 (right panels). A prograde
jet close to the equator and a retrograde jet are observed on the outer
boundary (Christensen et al., 1999; Aubert, 2005). Such a mean zonal
flow is typical for convection motions in rapidly rotating spherical
shells with rigid (in RIII) or free-slip boundaries and a large aspect ratio
x- Inertia perturbs the QG structure of the flow. We confirm with our
dataset the scaling law (v,) « (v,;)'* found by Gillet and Jones (2006)
in RIII (see Fig. 2).

3.2. Kinematic dynamo action

At sufficiently low Ra (Ra < 10Ra.), the flow remains perfectly
equatorially symmetric. Equatorially symmetric and anti-symmetric

800

-200

-800

1.5

Fig. 3. Axial vorticity w; = v x V-7 in the equatorial plane (top panels) and azimuthal sections of w, (bottom panels) for hydrodynamical simulations in RI (left panels) with E = 10~*
and Ra = 160 = 2.297Ra,; in RII (middle panels) with E = 3-10™> and Ra = 900 = 10.47Ra. and in RIII (right panels) with E = 107> and Ra = 5000 = 47.3Ra,. Such flow structures are

typical for convection motions in each regime (RI, RII, RIII).
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magnetic modes then decouple. In this case, we observe that the most
unstable mode is anti-symmetric and it corresponds to the axial dipolar
component. Close to the kinematic dynamo threshold Rm,, the growth
rate of the magnetic energy o approaches zero and evolves linearly with
the distance Rm—Rm,. Since Rm = Re Pm,Rm can be varied for a given
flow (i.e. for a particular value of Re determined by Ra) by changing
Pm. For a given buoyant forcing Ra and Ekman number E, a series of
kinematic simulations was performed by varying Rm (by changing Pm)
and the exponential growth (or decay) rate was measured. The
threshold Rm, was determined by linearly interpolating the values of
Rm between the slowest growing dynamo and the slowest decaying
dynamo. The series of runs was then repeated for different values of Ra
and E = 3-10~* and E = 10~ with Pr = 1. This method has been also
recently used in cartesian models by Sadek et al. (2016). Since this
procedure is numerically demanding, we have limited this kinematic
study to E > 107> (see Fig. 4).

In RI and part of RII, the critical magnetic Reynolds number Rm,
decreases when increasing Ra. It means that increasing Ra promotes
dynamo action sufficiently close to the onset of convection. Because of
the definitions of Ra and E, the influence of the global rotation results
from the values of these numbers. As the rotation rate increases (by
decreasing Ra or E), it suppresses vertical variations and the flow be-
comes almost QG. Two-dimensional flows can not give rise to dynamo
action. However, a QG flow with three components can trigger dynamo
action (see Roberts & King 2013 for a recent review on geodynamo
theory). Increasing Ra in RI allows to obtain a more complex flow
which promotes dynamo action. Slightly above Rm,, the growing
magnetic energy is mainly divided into two azimuthal components. One
of them is the axisymmetric axial dipolar mode. The second mode has
the same azimuthal symmetry as the dominant convection mode.

In RI, convection cells extend only partly to the outer boundary in
the equatorial plane. The optimal configuration for having dynamo
action (Rm,. reaches its minimum) corresponds to a completely devel-
oped and space-filling convection with almost no zonal flows (RII). In
this regime, the most unstable mode is equatorially symmetric and it is
dominated by the axial dipolar component. For E = 3-10~4,Rm, in-
creases rapidly with Ra in RII whereas Rm, is almost constant with
E <1074,

In RIII, Rm, increases with Ra (see Fig. 4). In the kinematic phase,
the growing magnetic field has no preferential symmetry since the ve-
locity field breaks the equatorial symmetry. Magnetic modes with a low
axial dipole contribution and sometimes localized mainly in one
hemisphere grow in time if Rm exceeds Rm,. Large kinetic fluctuations
affect the growth rates which must be averaged over long periods of
time (several magnetic diffusion times) in order to have precise values.
Determining Rm, in the turbulent regime requires considerable
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numerical resources. In models with high Ra, kinetic fluctuations and
zonal flows have certainly an important role in field generation. This
point is addressed in more details in the next sections by highlighting
the saturation mechanism of non-dipolar dynamos. Additional equato-
rially anti-symmetric flow contributions set in and couple magnetic
modes of both symmetries. Since Rm, increases with Ra, we can note
that the emergence of small-scale kinetic fluctuations and large-scale
zonal flows has the effect of reducing dynamo action even though the
effects of global rotation are still dominant (Ro, smaller than 0.1).

4. A systematic study of dynamo bifurcations in geodynamo
models

4.1. Previous studies and method

In this section, numerical results for the full MHD equations in-
cluding the back-reaction of the Lorentz force are presented. The
models are integrated in time until a statistically steady state is reached.
Two initial conditions for the magnetic fields are considered: a strong
dipolar field (with A ~ 10) or a weak seed field where all spherical
harmonics lower than 20 (for the degree [ and the number m) are in-
itialized with random amplitudes corresponding to the Elsasser number
of A ~ 1072, The initial velocity field and the temperature perturbation
correspond to the solutions described in the previous section. Some
calculations were started from a saturated state of another model with
slightly different parameters to test for hysteresis.

According to our hydrodynamical study, the turbulent regime which
is relevant for planetary interiors is poorly explored with the Ekman
numbers in the range 1073 > E > 10~* which Morin and Dormy (2009)
utilised. Systematic parameter studies have also been done with the
same numerical setup (Christensen et al.,, 1999; Kutzner and
Christensen, 2002; Christensen and Aubert, 2006; King et al., 2010;
Schrinner et al., 2012; Soderlund et al., 2012; Yadav et al., 2016). Given
that viscosity plays an important role in simulations with E > 1073, we
limit the range to lower values. In addition, those particular behaviors
are observed in simulations when E > 1073: the bifurcation can take the
form of an isola (Morin and Dormy, 2009), the magnetic field can be
dominated by an equatorial dipole component (Aubert and Wicht,
2004) or a subcritical dynamo can be obtained close to the onset of
convection (Christensen et al., 2001). We do not observe such behaviors
for smaller Ekman numbers.

In our dataset, the buoyant forcing Ra is varied significantly up by a
factor of 14 from Ra = 500 to Ra = 7000 for the lowest value of E. Pm is
also varied by a factor of 24 from Pm = 0.5 to Pm = 12 for E = 10~ and
almost by a factor 67 from Pm = 0.075 to Pm =5 for E = 10~°. By
considering such a huge parameter space, we obtain a large amount of
dynamo bifurcations in each hydrodynamical regime. Previous studies
either focused on one particular hydrodynamical regime or obtained
only a small amount of bifurcations with E < 10~ (Morin and Dormy,
2009). Due to these limitations, previous studies on the nature of dy-
namo bifurcations with our setup were never able to precisely highlight
the influence of the dimensionless parameters Pm,Ra and E. Such in-
fluences are crucial in order to understand the expected behavior with
realistic parameters. The Earth’s Ekman number is estimated to be
E = 10715, some eight orders of magnitude lower than what is currently
achievable in numerical simulations, i.e. E = 10~¢ (Yadav et al., 2016)
or E =107 (Schaeffer et al., 2017). In our MHD study, the range
10~ < E < 3-107 is considered in order to provide a large number of
models and vary significantly the other dimensionless numbers. This
method enables us to quantitatively understand the influence of the
different physical processes responsible for magnetic field generation.

For E = 3-107#, Morin and Dormy (2009) observed a supercritical
dynamo bifurcation with Pm = 6 and a subcritical one by lowering Pm
to 3. Decreasing the Ekman number to E = 10~* allowed to have a su-
percritical bifurcation for Pm = 3. The behavior observed with Pm = 6
(supercritical bifurcation) is shifted towards lower values of Pm as E is
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decreased. Morin and Dormy (2009) argued that this behavior could be
extrapolated to realistic parameters because both E and Pm are very
low in planetary interiors. They chose the Rayleigh number Ra as their
control parameter, even though changing this number affects sig-
nificantly the flow because it directly controls the buoyant driving. To
highlight the nature of dynamo bifurcations, we show the evolution of
A in (Pm,Ra/Ra.) plane for 3-10™* > E > 1075,

Fig. 5 shows our MHD dataset in (Ra/Ra.,Pm) planes for different
Ekman numbers. Dipolar solutions below or on the red dotted curve are
only obtained with a strong initial field. For E = 3-107* and E = 1074,
these curves correspond to the kinematic dynamo threshold in Fig. 4.
We show that the nature of dynamo bifurcations depends on the hy-
drodynamical regime. These regimes are separated in Fig. 5 by vertical
dotted lines.

4.2. Dynamo bifurcation in RI

Given that Re is low in RI, high values of Pm have to be considered
so that Rm = Re Pm exceeds Rm.. In addition, as seen in the kinematic
study, Rm, is high in RI. We explore dynamo bifurcations in RI for
E=310Pm=6; E=10"% Pm=12; E=310"Pm=10 and
E =107° and Pm = 5 (see Fig. 5).

Fig. 6(a) shows a typical dynamo bifurcation diagram for RI. The
parameters are E = 1074, Pm = 12. Clearly, a supercritical dipolar
branch is obtained. Morin and Dormy (2009) and Dormy (2016) pre-
sented very similar diagrams with E = 3-10~* and Pm > 6.

The magnitude of the field strength is very low in the vicinity of the
dynamo threshold for models in RI. As a result, the flow is almost un-
changed by Lorentz forces. In particular, the structure of the flow is still
dominated by only one convection mode and the dynamo solution can
be classified as a laminar dipolar dynamo. In Fig. 6(a), laminar dy-
namos have A < 1 and Ra < 160 (Ra < 2.3Ra.).

We observe an increase of the magnetic energy (measured by the
Elsasser number A) by more than one order of magnitude when Ra is
increased from Ra = 160 (2.3Ra,) to Ra = 180 (2.6Ra,) for E = 10~* and
Pm =12 (see Fig. 6(a)). A similar sharp increase is obtained for
E =3.10"* and Pm > 6. Such a jump is only observed at low Ra (in RI).
Then, a further increase of Ra induces a moderate variation of A. Such a
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sharp and pronounced variation for the magnetic energy has recently
been reported by Dormy (2016) as the manifestation of a new strong-
field dynamo branch in geodynamo simulations with high Pm. This
strong-field branch is believed to be relevant in the geodynamo context
(Roberts, 1978). We only observe such sharp variations of A in the
laminar regime.

In our kinematic study, we highlighted the inverse relationship
between Rm. and Ra in RI. Rm = Re Pm increases with the vigour of
convection. But, when keeping Pm fixed and increasing Ra, not only the
flow amplitude, but also the efficiency of the dynamo increases as in-
dicated by the decreasing critical magnetic Prandtl number in our ki-
nematic simulations. The dynamo supercriticality Rm—Rm, therefore
rises more significantly than the increase in flow amplitude due to the
larger Ra would imply. This suggests a somewhat faster increase of
magnetic energy with Ra. However, the very drastic rise at a certain
Rayleigh number indicates a bifurcation to another magnetic mode. The
action of the Lorentz force must be taken into account in order to un-
derstand the abrupt variations of A.

A sharp increase of A with Ra is typical of dynamo bifurcations in
the laminar regime (see Fig. 6) and the field strength increases by one
order of magnitude. Such variations can be regarded as a transition
between laminar dynamos of weak dipolar fields and dynamos with
stronger dipolar fields which must affect significantly the flow. How-
ever, their hydrodynamic counterparts are still in RI. In particular,
without the action of magnetic field through Lorentz forces, the flow is
still dominated by only one convection mode when Ra is increased from
Ra = 160 to Ra = 180 with E = 10~*. When the dynamo obtained with
Ra =160 was utilized for the initial conditions of the model with
Ra = 180, a more turbulent dipolar dynamo sets in with a significant
increase of the magnetic energy and the development of many con-
vection modes (see Fig. 6 panels (b) and (c)). The same process occurs
when a transition takes place from a weak-field dynamo to a strong-
field dynamo in Dormy (2016). In Fig. 6, for Ra = 140 and Ra = 160
(Ra < 2.3Ra.), weak dipolar fields are obtained (A < 1) and only one
convection mode is observed (laminar dynamos). According to the
evolution of A with Ra, a laminar dynamo with A slightly greater than
unity for Ra = 180 should be obtained. This scenario seems to take
place at the beginning of the simulation when Ra is increased to
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Fig. 6. A as a function of Ra with the parameters E = 10~* and Pm = 12 (top panel). Pm is sufficiently high to explore RI close to the dynamo onset. In panels (b) and (c), temporal
evolution of the kinetic and magnetic energies are shown for a simulation with Ra = 180 = 2.584 X Ra. which has been initialized with the saturated solution with Ra = 160. These panels
illustrate the generation of additional azimuthal convection modes in dynamo models whereas the azimuthal symmetry of the non-magnetic velocity field is unchanged.

Ra = 180. However, when A approaches unity, the Lorentz force enters
in the main force balance. Kinetic and magnetic perturbations with a
variety of azimuthal symmetry develop and the global manifestation of
this transition is a marked increase of A, visible in Fig. 6(a). We report
here in Fig. 5 abrupt variations of A for 4 different values of E. Morin
and Dormy (2009) and Dormy (2016) observed similar variations only
with E = 3-107*. Thus, we have noticed that all these abrupt variations
occur in the same way (regardless the value of E). Variations result from
a transition between laminar dynamos with A <1 and strong-field
dynamos.

This result is in agreement with magnetoconvection studies in
which the development of convection is affected by strong fields. In the
presence of strong imposed magnetic fields and rotation, the first order
force balance is magnetostrophic, i.e. a balance between the Coriolis,
pressure gradient, and Lorentz terms. Studies of linear magneto-
convection have shown that the azimuthal wavenumber of convection
decreases to m = (1) when a strong magnetic field (A > 1) is imposed
in the limit E — 0 (Chandrasekhar, 1961; Eltayeb and Roberts, 1970;
Fearn and Proctor, 1983; Cardin and Olson, 1995) whereas for the non-
magnetic case, linear asymptotic analyses predict that the azimuthal
wavenumber of axial columns varies as m = @(E~1/3) (Roberts, 1968;
Jones et al., 2000; Dormy et al., 2004). When the field strength becomes
important (A ~ 1), the spatial structure of convection modes are af-
fected by the Lorentz force. As predicted by magnetoconvection, we
observe that the flow structure depends on the magnitude of the mag-
netic field A.

4.3. Dynamo bifurcation in RII

In this section, we highlight the nature of the dynamo bifurcation in
RII (3Ra. < Ra < 10Ra.). Considering lower values of Pm allows to
study the nature of the dynamo bifurcation in RII. Regardless of the
magnitude of the initial magnetic field, the axial dipolar component is
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finally the dominant magnetic component, i.e. a dipole-dominated dy-
namo is obtained. Crossed out squares (in green) indicate different
magnitude for the initial field has been tested. Contrary to laminar
dynamos, the saturated field acts on the velocity field by reducing the
kinetic energy and the amplitude of velocity fluctuations close to the
dynamo threshold (see the Fig. 8 in Morin and Dormy (2009)). The
saturated field differs from the kinematically growing mode mainly by
the presence of extended toroidal magnetic fields close to the equatorial
plane.

In Fig. 5, supercritical bifurcations are observed with the parameters
E =10"* and Pm = 3 (panel (b)), E = 3-10~° and Pm > 2.5 (panel (c))
and E =10 and Pm > 1 (panel (d)). For these models, the field
strength increases gradually with the control parameters Ra or Pm and
saturated dipolar dynamos only exist if Rm exceeds the kinematic cri-
tical Reynolds number Rm,. For lower Pm, strong initial dipolar fields
are maintained over time with Rm < Rm. (below the red dotted
curves). Otherwise, no dynamo action can be generated with weak in-
itial fields. For these parameters, a turning point Rm, exists below
which strong initial fields cannot be maintained. Such a behavior cor-
responds to subcritical bifurcations.

When Ra is slightly higher than 3Ra, (close to RI) and Rm slightly
higher than Rm,, a process called “mode selection” is observed. This
process explains the existence of laminar dynamos in which only one
convection mode is dominant in RIL. In the kinematic phase, the
growing magnetic energy is primarily distributed on the axisymmetric
component and on another azimuthal mode with a symmetry close to
that of the critical convection mode m,. At this time, the velocity field is
not affected by this weak growing magnetic mode and the kinetic en-
ergy is distributed on several azimuthal modes as it is typical in RIIL In
the saturated phase, the Lorentz force promotes the kinetic azimuthal
mode with the same symmetry as the initially growing magnetic mode
and it has a negative influence on the other kinetic convection modes.
Consequently, a laminar dynamo is finally the stable solution if A is
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smaller than 1 as in RI. Such a mode selection process was also reported
by Morin and Dormy (2009). Dynamos with stronger fields (A > 1) are
generated by increasing Ra or Pm in which the dominance of only one
convection mode is less pronounced.

In RII, the field strength A depends on Pm and Ra. The smaller E,
the faster A increases with Ra and Pm (see also Appendix A).

Abrupt variations of A has been obtained in RI. Such variations do
not appear in RII. Weak and strong dynamo branches observed in RI
seem to collapse in RII and give rise to the usual dipolar branch. In RII,
A (size of the circles in Fig. 5) increases with Pm and can reach values
higher than 40. In this case, the Lorentz force affects the flow structure
(see Section 5 and 6). Even if only one dipolar branch exists in RII and
RIII, the relative importance of the Lorentz force depends strongly on
Pm. In simulations with high-enough Pm values, this force is one of the
dominant forces.

4.4. Dynamo bifurcation in RIII

In RIII, the magnetic field topology depends on the magnitude of the
initial field at low values of Pm (see Fig. 5). With a weak initial field,
multipolar solutions are obtained with Rm close to Rm. and E suffi-
ciently low whereas for Pm or E sufficiently high, dipole-dominated
dynamos are finally the stable solutions. For E = 3-107*, only one bis-
table example has been obtained (see Figs. 5(a) and 7). But, the size of
the bistable area in (Ra/Ra.,Pm)-plane increases as E decreases (see also
Fig. 7). The stability domain of dipolar solutions is limited on the right
by the criterion Ro, < 0.12 (Christensen and Aubert, 2006).

Multipolar dynamos are only generated from a flow in the turbulent
regime (RIII). The magnitude of the magnetic energy is proportional to
the difference Rm—Rm, for the multipolar branch and only sets in from
a small perturbation when Rm > Rm, (see Appendix). This bifurcation
is thus a supercritical one. The use of strong initial fields inhibited
multipolar dynamos close to Rm, in previous systematic studies. For
instance, Christensen and Aubert (2006) claimed that the dynamo
threshold for multipolar dynamos corresponds to Rm > 1000. By con-
sidering a weak initial field, we have clearly determined the nature of
the dynamo bifurcation for the multipolar branch and the existence of
multipolar dynamos with Ro, much lower than 0.1 with Rm close to Rm,
(see Fig. 4).

When Pm is sufficiently high, regardless of the initial magnetic field,
the dynamo is dominated by the axial dipolar component. Such solu-
tions obtained by considering a weak initial field are shown in Fig. 5 by
green crossed out squares. Such solutions provide the upper bound of
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Fig. 7. Evolution of the bistable regime in a plane (Rog,E). By considering weak initial
fields, multipolar solutions can be obtained into the stability domain of dipolar fields
which gives rise to a bistable regime. The solution depends on the magnitude of the initial
field and on Pm.
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the stability domain of multipolar dynamos in (Ra/Ra.,Pm)-plane.
Crossed out squares appear for lower Pm as the Ekman number de-
creases. However, this stability domain is shifted down by lowering E
and its size increases by reaching much lower values of Pm.

In Fig. 7 we report the extension of the bistable regime for different
Ekman numbers E. As E decreases, multipolar solution with lower Ro,
can be obtained by considering a weak initial field. This result suggests
that multipolar solutions characterized by reversing fields could be
relevant solutions for realistic parameters: E = 1071° and Ro = 107°.
However, geomagnetic reversals are rare events and the Earth’s mag-
netic field is dominated by the dipolar component.

The existence of a bistable regime in geodynamo models was not so
clearly reported by previous systematic parameter studies using the
same numerical setup. Christensen and Aubert (2006) only mentioned
that the dipolarity depends on the initial magnetic conditions for one
set of parameters. The existence of a bistable regime induces a hys-
teretic behavior. For E = 10~* and Pm = 2,Pm = 1 and E = 3-10~° and
Pm = 0.25 (see Fig. B.22), we have tested the existence of a hysteretic
behavior as Ra is varied. Dipolar fields collapse if Ra is increased such
as Ro, exceeds the transitional value 0.12 and the multipolar field
configuration appears to be the only stable solution. Since the multi-
polar branch can extend into the stability domain of dipolar dynamos,
hysteretic behavior is observed if Ra is decreased from this state, i.e.
multipolar dynamos are maintained in the stability domain of dipolar
dynamos. As stated by Busse and Simitev (2010) and Schrinner et al.
(2012) for stress-free models, the emergence of a bistable regime results
from the action of zonal flows. As described in our hydrodynamical
study, zonal flows gain in strength when the Ekman number is de-
creased in RIII even if Ro, is much lower than 0.1 in models with no-slip
boundaries.

Strong dipolar fields can be maintained over time whereas weak
fields are not amplified (dipolar models below the red dotted curves),
i.e. the dipolar branch is subcritical in RIII.

5. Discussion on dynamo bifurcations
5.1. Subcriticality in RII

For dynamo models with Rm < Rm,. (below the dotted red curves),
the Lorentz force associated with strong initial dipolar fields modifies
the flow in such a way that it promotes dynamo action which in turn
maintains magnetic activity. Schrinner et al. (2007) and Schrinner et al.
(2012) pointed out the importance of the y-effect in the generation of
dipolar fields. This effect is crucial to advect the mean azimuthal
magnetic component latitudinally and radially (see Schrinner et al.,
2012 for details). The y-effect corresponds mathematically to the anti-
symmetric part of the « tensor which is related to the spatial variations
of the velocity field (Moffatt, 1978). The y-effect operates only if the
field strength is not negligible, as it results from u’ X b’ where u’ and b’
denote the fluctuating parts of the velocity and magnetic fields re-
spectively. As noted by Sreenivasan and Jones (2011), it can induce
subcriticality when: (i) the initial field is strong enough and (ii) the flow
has a non-zero fluctuating part. Convection in rapidly rotating shells
obviously satisfies the latter condition.

An additional condition must also be mentioned for the y-effect; if
convection cells only partly reach the outer sphere, as it is the case in
models in RI or close to RI, no y-effect can exist. By considering a strong
initial dipolar magnetic field, convection cells extend on the whole
volume, and in particular, up to the outer sphere close to the equatorial
plane. Fig. 8 enables us to better understand the impact of the magnetic
field on the helicity distribution and it was created by subtracting he-
licity obtained in non-magnetic simulations from helicity of corre-
sponding MHD runs for a subcritical dynamo (Rm, < Rm < Rm_). In
RIL, the Lorentz force associated with a dipolar field in such a model
acts to transport helicity towards the outer sphere at low latitudes,
while it is approximately zero in hydrodynamical runs. By contrast, in
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Fig. 8. Action of the magnetic field on the helicity distribution. Helicity from the associated non-magnetic runs have been subtracted from the helicity calculated in MHD simulations
dominated by a dopilar field. The difference is then show in each regime. The parameters are E = 107*,Ra = 340 = 4.88Ra, and Pm =1 (on the middle), (on the right)
Ra = 750 = 10.77Ra, and Pm = 0.5 and (on the left) Ra = 155 = 2.55Ra, with E = 3-10™* and Pm = 6. The action of Lorentz forces associated with dipolar solutions is highlighted close to
the dynamo threshold in the hydrodynamical regimes: RI, RII and RIII (from left to right).

RI, the action of the field on helicity is shown in Fig. 8(a) when Rm is
slightly above Rm,. This result is typical for laminar dynamos (A < 1).
Helicity is mainly modified in boundary layers. In RIII, helicity is
mainly globally decreased by the magnetic tension of dipolar fields (see
Fig. 8(c)).

Here, helicity is simply used as a proxy for the flow structure which
does not exist close to the outer sphere without dipolar fields in RIL. A
strong initial dipolar field extend radially convection cells and induces
the presence of y-effect which is a scenario for subcriticality in RIL

Sreenivasan and Jones (2011) argued that dipolar magnetic fields
enhance the kinetic helicity and are therefore easier to maintain than
fields with a more complicated field topology. However, as noted by
these authors, the relation between kinetic helicity and induction me-
chanisms is not straightforward. Moreover, Schrinner et al. (2007)
showed that the kinetic helicity is indeed a bad proxy measure for in-
duction effects (a-effect) in these models. As noted in our kinematic
study, the growing mode has a preferred dipolar symmetry in RI and RII
if Rm exceeds Rm.. A mode selection mechanism as proposed by
Sreenivasan and Jones (2011) to explain the dominance of dipolar
fields in nonlinear models is not necessary for non-turbulent flows
(Ra < 10Ra,).

5.2. Subcriticality in RIII and multipolar dynamos

In order to understand the existence of multipolar dynamos in the
stability domain of dipole-dominated dynamos (Ro, < 0.12), we study
the saturation mechanism of multipolar dynamos by approaching the
dynamo threshold. Since the multipolar branch is supercritical, dynamo
models with Rm very close to Rm, can be obtained. By comparing the
flow of such models with their hydrodynamical counterparts, the action
of the Lorentz force can be highlighted. At sufficiently low Ekman
numbers, important zonal flows develop in RIII even if Ro, is lower than
0.1 (see Fig. la). If Rm is slightly above Rm,, a weak field is ex-
ponentially amplified with time and saturates by reducing the energy of
zonal flows which initially caused its amplification (see Figs. 1 and 9).
The convective energy distribution is not significantly affected by the
presence of multipolar fields. The mean energy of zonal flows in mul-
tipolar dynamos (squares in Fig. 9) is reduced, but, it is still higher than
that observed in associated dipolar dynamos (full circles). At levels
sufficiently above the dynamo threshold Rm, (by increasing Pm), zonal
flows are substantially quenched by Lorentz forces and the magnitude
of zonal flows in these multipolar models becomes comparable to that
of dipolar models (Fig. 9). Once zonal flows have reached a comparable

level for the dipolar and multipolar branch, the system seems to prefer
the former. Consequently, a transition from a multipolar dynamo to a
dipolar dynamo is observed if Pm is high enough. Such transitions are
reported in Fig. 5 by crossed out squares. Such a behavior was also
obtained in models with stress-free boundary conditions (Schrinner
et al., 2012) where the multipolar branch corresponds to aw oscillatory
dynamos. Such transitions represent the upper boundary in
(Ra/Ra.,Pm)-plane for the stability domain of the multipolar branch
when Ro, < 0.1. Close to this upper boundary, a transient multipolar
solution is first obtained for a period of time which can be of the same
order as one magnetic diffusion time. This period is shorter for higher
Pm.

Even if zonal flows play a constructive role in the generation of
multipolar dynamos, we did not find good correlations between the
azimuthal magnetic component from the DNS with that generated by
the w-effect resulting from the stretching of poloidal fields by zonal
flows. This lack of correlation suggests that multipolar dynamos in
geodynamo models result from an a’w mechanism where small-scale
convection cells and large-scale zonal flows contribute constructively to
the generation of azimuthal fields which are then partially converted
into poloidal components by an a-effect. An example of such a me-
chanism in global spherical shells was highlighted by Schrinner et al.
(2011) where the dynamo coefficients were determined with the test-
field method (Schrinner et al., 2005).

Relative to multipolar dynamos with Ro, > 0.1, we note the emer-
gence of large scale magnetic components as an equatorial dipole mode
if Rm is close to 100 with Ro, < 0.1 and E > 3-10~°. Dynamos influenced
by an equatorial dipole mode can have a dipole field strength f;,, higher
than 0.5. In order to distinguish the different dynamo branches, the
non-axisymmetric contribution must be filtered out in the definition of
Jaip- Zonal flows are known to be more important in models with higher
Ro,. Non-axisymmetric magnetic modes are damped by the differential
rotation in models with Ro, > 0.1 (see Moffatt, 1978Chap. 3.11), but, it
can be built by columnar convection less affected by zonal flows having
lower Ro,. For Pm and E sufficiently low, multipolar dynamos with
important zonal flows (Vz > 0.25) can be obtained even if Ro, is much
lower than 0.1. In this case, we note that the relative importance of
axisymmetric magnetic components increases and periodic reversals of
the axial dipole mode are observed (see Appendix B). For instance, such
a behavior appears for the multipolar dynamo with E = 107> and
Pm < 0.15. Sheyko et al. (2016) reported a similar result for a slightly
lower Ekman number. A study of reversals in geodynamo models with
Ro, much lower than 0.1 is postponed to a future paper.
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Fig. 9. Comparison of the relative importance of zonal flows in hydrodynamical models and in dipolar and multipolar MHD simulations for different Ekman numbers and for Ro; < 0.12.

6. Action of magnetic fields in geodynamo models

In this section, we contrast dynamo models with non-magnetic, but
otherwise identical, rotating convection models in order to quantify the
influence of Lorentz forces on convective dynamics. While comparisons
between dynamo and purely hydrodynamical simulations have been
conducted (e.g., Christensen et al., 1999; Aubert, 2005), these studies
are typically limited to convection less than 40 times critical and di-
polar magnetic field geometries. Soderlund et al. (2012) have con-
sidered more turbulent flows, but they used hyperdiffusivities in mod-
elling the most turbulent flows. In addition, they focused mainly on the
origin of the transition between dipolar and multipolar fields. Here, the
action of multipolar and dipolar fields on the flow is determined for the
different hydrodynamical regimes close to and far above the dynamo
threshold. This approach enables one to understand the nature of dy-
namo bifurcations presented in the previous section and the force bal-
ance in dynamo models.

6.1. Close to the dynamo threshold

Close to the dynamo threshold Rm, in RI or close to the turning
point Rm, in the non-laminar regimes, the Lorentz force must play a
minor role. However, this force modifies sufficiently the flow in RI
which allows the saturation of the exponential magnetic field growth
and it generates the necessary conditions for the maintenance of dipolar
fields in RII and RIIL

Aubert (2005) noticed that the Lorentz force associated with dipolar
solutions affects zonal flows significantly. We note here that the non-
zonal velocity field v, is also affected. In Fig. 10, the kinetic energy
density distribution of v, is plotted for dynamo runs and non-magnetic
runs. Close to Rm, in RII (see Fig. 10a), the presence of the dipolar
magnetic field does not change the convective flow at large-scales
(corresponding to small harmonic degree ). By contrast, dynamo action
converts a fraction of the kinetic energy at small-scales into magnetic
energy. Very close to the dynamo threshold, the Lorentz force affects
slightly the main force balance in which the Coriolis force is mainly
balanced by pressure gradients. For non-magnetic convection in rapidly
rotating shells, the VAC balance is obtained with Ra < 10Ra, (Aubert
et al., 2001). It is important to note that the Lorentz force enters in this
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force balance by reducing the kinetic energy of convection at small-
scales. Only one example for each hydrodynamical regime is given in
this manuscript, but, the robustness of this result has been tested for
different Ekman numbers E and buoyant forcing Ra and it persists if
Rm. > Rm > Rm; in this regime.

In RII (Ra > 10Ra,), inertia acts to generate zonal flows which in
turn allow multipolar solutions and a bistable regime to exist (see
Figs. 1 and 9b). The force balance in non-magnetic models corresponds
to the CIA balance (Aubert et al., 2001). In this regime, the dipolar
branch is subcritical and the influence of the Lorentz force on the flow is
minimum close to the turning point Rm;,. Large-scale dipolar magnetic
fields maintained by dynamo action do not allow zonal flows to dom-
inate in the kinetic energy spectrum because they quench the axisym-
metric toroidal kinetic part. First order differences result in zonal flows
between dipolar dynamos and corresponding non-magnetic models.
The Lorentz force of subcritical dipolar models does not change the
kinetic energy distribution of v, at small-scales (high harmonic degree
D). A significant amount of convective kinetic energy is converted into
magnetic energy at large-scales (see Fig. 10). The strong initial dipolar
field reduces the importance of inertia in this hydrodynamical regime.
Fig. 10 illustrates the modification of the flow structure by the Lorentz
force of dipolar dynamos close to Rm;, in RIIL

6.2. Far above the dynamo threshold

So far, we have focused on dynamos close to their threshold. By
comparing the MHD flow and the non-magnetic flow, we highlighted
the action of dipolar fields in each dynamical regime. However, natural
dynamos are expected to maintain magnetic activity far above their
dynamo threshold where the Lorentz force is one of the dominant
forces. We highlight the influence of dipolar fields on flow structure and
heat transfer. We focus on dipolar dynamos because of their geophy-
sical applications.

King and Buffett (2013) suggest that the typical length scale
L, = 7/l in numerical models is controlled mainly by the influence of
rotation, viscosity and buoyancy. From this result, they argued that the
magnetic field does not significantly affect the flow structure. However,
this measure is a volume-averaged quantity of the influence of forces
which act on the flow at different length scales. Figs. 11 and 12 enable
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Fig. 10. Kinetic energy distribution of the convective flow (non-zonal) as a function of the harmonic degree [ with E = 3-10~°. Dynamo results for dipolar solutions are compared to their
associated hydrodynamic models for magnetic Reynolds numbers close to their critical values.

us to understand the increasing effect of the Lorentz force on the con-
vective flow distribution as Rm—Rm, increases by controlling Pm. The
magnetic energy (measured by A) increases as Rm—Rm, becomes
greater, In the non-turbulent regime with E = 1074, the typical length
scale L, does not significantly depend on Rm whereas the kinetic energy
distribution is substantially modified at any scale by dipolar fields if Rm
exceeds sufficiently Rm.. In RIII at E = 1074, the Lorentz force similarly
decreases the kinetic energy at all scales. Viscous effects become less
important as the Ekman number is decreased to E = 3-10° (see
Fig. 12). However, we notice that the left panels in Figs. 11 and 12 are
very similar. In RII, the kinetic energy spectrum as more and more
concentrated at large scales as the Lorentz force increases (Pm in-
creases). At the same time, the energy of small convection cells increase
with Rm (at large harmonic degree 1). The result is that the average
quantity L, is almost unaffected by dipolar fields even if the flow
structure depends on A. In RIII (right panels in Figs. 11 and 12), The
kinetic energy continues to be distributed on many length scales as the
magnetic influence increases. Close to the transitional value Ro, =~ 0.1
when inertia plays a role, we observed that the flow speed was sig-
nificantly reduced by the Lorentz force. This effect becomes more no-
ticeable as the Ekman number decreases in the turbulent regime. The
growing influence of magnetic fields as E decreases was also noted by
Soderlund et al. (2012).

When we consider high Pm simulations, the Lorentz force constrains
the convection to develop at large length scales. It is typical for dy-
namos in the MAC balance in which the Lorentz force is one of the
dominant forces (Starchenko and Jones, 2002). Such dynamos, also
called strong field dynamos, can be obtained without abrupt transitions
by considering dynamos largely above their dynamo threshold (by in-
creasing Pm). A discussion on this particular point can be found in
Dormy (2016) and in Aubert et al. (2017).

We also observe that dipolar fields affect the azimuthal distribution
(the typical harmonic order m) of the kinetic energy (not shown). As
predicted by magnetoconvection studies, strong dipolar fields increase
the size of convection cells in the azimuthal direction. However, the
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critical azimuthal wavenumbers of non-magnetic convection
(Christensen and Aubert, 2006) for E > 10~ and Pr = 1 are smaller
than 15. This number is already low and it does not allow to observe a
significant transfer of kinetic energy into larger scales.

6.3. Influence of dipolar fields on heat transfer

From hydrodynamical studies, we know that for the range of
parameters E > 3-10~° and Ro; < 0.11, heat transfer scales as Nu ~ Ra®/>
(King et al., 2010). By considering lower Ekman number (10~¢ and
3-1077), Gastine et al. (2016) have found a steeper scaling law
Nu = 0.15Ra?E?> where Ra is here the usual Rayleigh number
Ra = RaPr/E. The latter scaling holds in the rapidly rotating regime,
i.e. RaE®5 < 0.4. Due to this criterion, we note that the rotation-
dominated regime as described by Gastine et al. (2016) corresponds to
RII with E > 107°. Consequently, the important zonal flows which de-
velop in low-E models, do not affect the heat transfer efficiency for this
range of parameters. However, their free-slip counterparts show that
dominant zonal flows can reduce the heat transfer (Yadav et al., 2016).
The increase of Vz by lowering E could also reduce the heat transfer
with E < 107° in no-slip models.

Fig. 13 enables us to understand the influence of dipolar fields on
the efficiency of heat transfer in geodynamo simulations. By con-
sidering different Pm, the field strength of self-sustained dipolar dy-
namos has been varied by more than one order of magnitude. Different
values for Ra were considered in order to explore different dynamical
regimes (RII and RIII). In the non-turbulent regimes (Ra < 10Ra,, RII),
the magnetic field enhances heat transfer since the ratio Nu/Nu, is
higher than 1 for Ra = 510 = 6Ra,.. Nu increases with A even if the field
strength becomes large in this range of Ra. In this regime, the increase
of the magnetic influence allows the quasi-geostrophic structure of the
flow which limits heat transfer to break. The influence of rotation be-
comes less pronounced as A increases and the result is an enhancement
of heat transfer efficiency in MHD runs. By contrast, when Ra is suffi-
ciently high, dipolar fields reduce heat transfer even if the field strength
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Fig. 11. Kinetic energy distribution of the convective flow (non-zonal) as a function of the harmonic degree I with E = 10~ close to the dynamo threshold for a typical supercritical model
(left panel) and a typical subcritical one (right panel). For E = 10~* and Pr = 1,Ra, = 69.65.
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Fig. 12. Kinetic energy distribution of the convective flow (non-zonal) as a function of the harmonic degree [ for the parameters E = 3-10~> and different Ra.

is low (A < 1). Close to the transitional value Ro, ~ 0.1, heat transfer in
hydrodynamic runs is more efficient than in MHD simulations (see right
panel in Fig. 13). Dipolar fields in turbulent models reduce the heat flux
associated with the non-zonal flow (see Fig. 12). The results show that
the influence of dipolar fields on heat transfer depends on the buoyant
forcing Ra. These results hold in the range 10~ > E > 107> and are in
agreement with the dataset presented by Christensen and Aubert
(2006).

Results for heat transfer efficiency must be compared with those
obtained by Yadav et al. (2016) (see their Fig. 4). The authors per-
formed simulations with Pm = 1 and interpreted their numerical results
differently since they did not notice the existence of different dynamical
regimes in geodynamo simulations which are explored by varying Ra.
The results presented in Fig. 13 are not changed by taking the definition
for A introduced by Soderlund et al. (2012). In their plot of Nu/Nuy, as a
function of A, the field strength has been varied by changing Ra in
Yadav et al. (2016). As A increases with Ra, it is not possible to dis-
tinguished whether the observed decrease of the heat transfer efficiency
is due to the increase of A or that of Ra in their study. By doing a similar
analysis with a larger parameter space (different Pm), we can claim that
the magnetic influence of dipolar fields depends on the buoyant forcing.
The field strength has a minor impact.

7. Summary and applications to planetary interiors

In our numerical survey, dimensionless parameters were varied
significantly in order to determine their influence in geodynamo
models. This method enables us to argue on the validity of numerical
results, as realistic parameters cannot be reached by direct numerical
models. In particular, we highlighted the existence of different dyna-
mical regimes in which dipolar dynamos can be generated. The influ-
ence of strong initial fields on the flow depends on the hydrodynamical
regime. It is necessary that this influence promotes dynamo action in
order to obtain a subcritical bifurcation. Otherwise, bifurcations are
supercritical. Surprisingly, our study seems to show that the Ekman

number does not directly affect the nature of the dynamo bifurcation
and the magnitude of Ra/Ra. is in fact the key parameter. However,
lowering the Ekman number allows to maintain dipole-dominated dy-
namos for higher and higher buoyant forcing Ra/Ra. (in RIII) where
multipolar dynamos are also stable solutions. This behavior enables us
to extrapolate our results to realistic parameters. However, it is im-
portant to note that caution should be exercised in interpreting the
results obtained with Ekman numbers which differ considerably from
realistic values. Previous studies have noted an influence of the mag-
netic Prandtl number on the nature of the bifurcation. In fact, this
number allows to select the hydrodynamical regime as the magnetic
Reynolds number (Rm = Re Pm) has to exceed a critical value for dy-
namo action.

In the laminar regime (Ra < 3Ra,), the power spectrum of the non-
magnetic velocity field for the longitudinal Fourier mode consists only
of the critical convection mode and its harmonics. Slightly above the
kinematic dynamo threshold Rm,, the exponentially growing mode is
the axial dipole mode. Then, the Lorentz force slightly modifies helical
motions and the field strength is low (close to Rm.). The bifurcation is
supercritical. Dipolar fields play a major role when A exceeds 1 and the
convective flow structure is thus changed by the emergence of addi-
tional convection modes. The manifestation of this change is a sharp
increase of the magnetic energy interpreted as a strong-field dynamo
branch by Dormy (2016) where the force balance would be magne-
tostrophic. High Pm has to be considered in order to have dynamo
action close to the onset of convection. In this dynamical regime, the
inertia term has a minor role, which means that the Ro < 1 condition is
satisfied. The Reynolds number in such models, however, is also very
low, whereas quasi-geostrophic turbulence develops in planetary in-
teriors. Abrupt variations of the magnetic field strength (by more than
one order of magnitude) as Ra increases, are only obtained close to the
onset of convection where fields with A higher than 1 induce an im-
portant change of the flow structure.

Numerical dynamos with E higher than 10~ in spherical shells de-
velop in RII where convection is completely developed and zonal flows
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Fig. 13. Typical influence of dipolar fields on heat transfer efficiency with E = 3-107. Variation of the ratio of Nu for dynamo and hydrodynamic cases Nuy, as a function of A for three
values of Ra (panel (a)): Ra = 510 = 6Ra.,Ra = 1100 = 12.9Ra, and Ra = 2000 = 23.5Ra.. Nu as a function of Ra is shown for different Pm (panel (b)). Since Rm increases with Pm, the
more we consider high Pm, the more the Lorentz force influences convection. However, this influence depends on the hydrodynamical regime.
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are minimal. This parameter space was favored by previous systematic
parameter studies because smaller Ekman numbers require important
numerical resources. In this dynamical regime (RII), we have shown
that the dynamo bifurcation can be supercritical for Ra close to values
corresponding to the laminar regime, or subcritical. The latter situation
is obtained with low Pm. We argue that subcriticality is probably in-
duced in RII by the existence of the y-effect which is one of the in-
gredients required for dipolar field generation (Schrinner et al., 2012).
Convective motions and a non-negligible magnetic field are necessary
conditions for the development of the y-effect. This effect was utilized
by Sreenivasan and Jones (2011) to explain the dominance of dipolar
fields in geodynamo simulations. On the other hand, we have shown
that the axial dipole mode is the growing mode in the kinematic phase
and the other modes either decrease in time or grow more slowly. In
fact, the mode selection as proposed by Sreenivasan and Jones (2011)
which is a nonlinear process, is not necessary in this dynamical regime
(RID).

In non-turbulent regimes, heat transfer efficiency improves as
magnetic field strength increases. Dipolar fields reduce the geostrophic
constraint which limits heat transfer in this regime. By considering
models close to the dynamo threshold, we have shown that dipolar
fields modify the flow at small length scales whereas the large-scale
convective flow is almost unaffected.

In the turbulent/inertial regime (Ra > 10Ra.) where the increase of
the buoyant driving promotes zonal flows, a supercritical multipolar
branch exists for low Pm with Rm > Rm,.. Zonal flows contribute to field
generation of these dynamos and the Lorentz force mainly acts to sa-
turate magnetic activity growth by quenching zonal flows. Previous
geodynamo simulation studies involving strong initial dipolar fields of
high Ekman numbers have reported multipolar dynamos only with
Rop, > 0.1. Such conditions prevent multipolar dynamos by limiting
zonal flows.

The dynamo bifurcation of the dipolar branch in the turbulent re-
gime is subcritical. The kinematic study shows that Rm, increases with
Ra and means that turbulent fluctuations and zonal flows have a ne-
gative impact on dynamo action. Strong dipolar fields reduce such ef-
fects and allow subcriticality. The reduction of inertia effects by strong
dipolar fields limits the development of the convective flow at large-
scales resulting in a decrease of heat transfer efficiency even when the
field strength (measured by A) does not exceed unity.

The magnetic field strength of saturated dipolar dynamos grows
rapidly with Ra in RIIL In comparison, A remains almost constant when
Ra is increased in RIII but Pm held fixed. Having our kinematic study in
mind helps us to understand this evolution. The key parameter is the
distance from the threshold Rm—Rm, and it increases rapidly with Ra in
RII (BRa. < Ra < 10Ra.). In contrast, because of the increase of
Rm.,Rm—Rm, remains almost constant in RIII. As a result, the field
strength of dipolar dynamos does not depend significantly on Ra in RIII
(see Appendix A). However, the magnetic Reynolds number Rm is of
limited use for characterizing dynamos. This output parameter can be
modified by varying the buoyant forcing Ra or the magnetic Prandtl
number Pm when E and Pr are held fixed. We have clearly shown that
the control parameters Ra and Pm can have different influences on the
magnetic field strength, the typical length scale or the heat transfer
efficiency.

Interestingly, the dependency of Rm. on Ra shows that most of
numerical dipolar dynamos with Pm < 1 and E > 107> obtained in
previous studies are dynamos with Rm in the vicinity of Rm,. The
Lorentz force associated with such fields has a minor role (see King
et al., 2010; King and Buffett, 2013; Soderlund et al., 2012), however in
models with Rm far above Rm,, the role of the Lorentz force becomes
dominant. This situation is obtained by considering high magnetic
Prandtl numbers if E > 1075 or by lowering the Ekman number with Rm
high enough (around 1000) (see Soderlund et al., 2015; Yadav et al.,
2016; Aubert et al., 2017; Schaeffer et al., 2017). The magnetostrophic
regime which is relevant in planetary interiors corresponds to the
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numbers: Ro < 1,Re>1 and A = 1. Current computational models
cannot reach these extreme parameters, especially for the Reynolds
number. However, turbulent effects such as generation of zonal flows
can develop in low Ekman simulations even when rigid boundaries are
used. Although inertia and viscous effects play a role in simulations, the
Coriolis force and the Lorentz force are dominant in models with high
Pm, low E and high Ra/Ra.. Wicht and Christensen (2010) and Teed
et al. (2015) have observed magnetostrophic events as torsional oscil-
lations in direct numerical simulations which explore this regime (Pm
sufficiently high).

By increasing the magnetic Prandtl number in numerical models,
the importance of the Lorentz force is increased as described above.
While abrupt transitions are obtained close to the onset of convection,
we show that the flow structure (see Section 5) and the field strength
(see Fig. 5) evolves gradually with Pm when Ra > 3Ra, (in RII and RIII).
We show that when Pm is sufficiently high, the field strength reaches
the magnitude of the strong field dynamo branch identified with a
lower buoyant forcing (see Fig. 5 with E = 107#). In addition, the length
scale of the flow is gradually increased when the Lorentz force becomes
more and more dominant (see Section 5). As observed in RI, we also
show that the flow is organized on large scales in models with higher Ra
if Pm is sufficiently high as expected in the MAC regime (Starchenko
and Jones, 2002). Geodynamo simulations with Rm largely above their
threshold can improve our understanding on the Earth’s dynamo (see
Dormy (2016) and Aubert et al. (2017) and references therein for a
discussion).

Paleomagnetic observations indicate that the field has reversed its
polarity hundreds of times in Earth’s history (Amit et al., 2010). Re-
versals and excursions are rare events, as their duration is much shorter
than the period of the stable polarity chrons separating them. Such
events are also very irregular. Their frequency varies significantly and
can include very long periods of stable polarity. Reversals can be in-
vestigated using various tools, including numerical models, observa-
tions, laboratory magnetohydrodynamics experiments (Berhanu et al.,
2010) and theory. Numerical dynamo models operate in a parameter
regime far from what would be appropriate for modeling Earth’s core,
so their application to the geodynamo is questionable and efforts have
to be made in order to extrapolate such numerical results. Systematic
studies of numerical dynamos provide vital information about the de-
pendence of dynamo properties on dimensionless parameters. Previous
studies highlighted a dichotomy between non-reversing dipole-domi-
nated dynamos and reversing non-dipole-dominated multipolar solu-
tions. The initial strong dipolar field collapses in simulations if the ratio
of inertia to the Coriolis term exceeds the critical value Ro, > 0.1. Di-
pole dominated dynamos that rarely reverse can, in some cases, be
found in the boundary between both regimes. It was argued that this
scenario would explain observed reversals (Olson and Christensen,
2006) and appears to be the only possibility for reversals in our simple
numerical model (see the review by Roberts and King, 2013). Dipolar
dynamos close to the multipolar regime would explore this regime
episodically due to important kinetic fluctuations which temporarily do
not respect the criterion for dipolar dynamos. After the rapid dipole
collapse caused by the increase of inertia, the reduction of Ro, below
the critical value allows the restoring of the dominant dipolar field with
the same direction (excursion) or with the opposite direction (reversal).
This scenario was observed in numerical studies with Ekman numbers
greater than 107%.

In our study, we show the emergence of a bistable regime due to
zonal flows which develop in non-magnetic runs with Ro, below 0.1 and
E sufficiently low. In this regime, the saturated dynamo solution de-
pends on the initial conditions for the magnetic field and we report
hysteretic behavior observed for different Ekman numbers and mag-
netic Prandtl numbers (see Figs. A.15 and A.16). The increase of Ra
induces the dipole collapse if Ro, exceeds 0.1 and only multipolar so-
lutions are obtained. However, an increase of the relative importance of
zonal flows was also observed as the dipole collapsed in low Ekman and
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low Pm models. A reduction of the buoyant forcing does not imply a
transition to a dipole-dominated dynamo even if Ro, < 0.1 as the mul-
tipolar branch can extend into the dipolar regime if E and Pm are suf-
ficiently low.

Such a bistable regime has been also found in models with stress-
free boundaries (Busse and Simitev, 2006; Schrinner et al., 2012). As
viscous boundary layers do not limit the development of zonal flows in
such models, they contain a huge part of the kinetic energy
(Christensen, 2002) even if the Ekman number is not very low.
Schrinner et al. (2012) have clearly shown that the differential rotation
by converting poloidal magnetic field components into toroidal ones
participates to the dynamo mechanism of non-dipolar dynamos which
appear as oscillatory dynamos with periodic reversals of all magnetic
components. Comparable situations can also appear in models with no-
slip boundaries only if the Ekman number is sufficiently low (see
Appendix B and Sheyko et al., 2016).

From our hydrodynamic study, we deduce that the relative im-
portance of zonal flows increases as the Ekman number varies towards
realistic values in no-slip models. As a result, the multipolar branch
would persist for local Rossby numbers much lower than 0.1. This ex-
tension of the multipolar branch into the dipolar regime reaches lower
and lower values of Ro, by lowering the Ekman number. A decrease of
Ro, below 0.1 would not induce the generation of a dipole-dominated
dynamo. Excursions and reversals can be explained by Olson &
Christensen’s scenario for geodynamo simulations performed with high
Ekman numbers in which zonal flows are limited and the turbulent
regime is not explored. This scenario also seems to be relevant if high
Pm are considered. In this case, Lorentz forces prevent the emergence of
zonal flows and multipolar dynamos are not present when Ro, < 0.1.
However, Pm is known to be very low in liquid metals and especially in
the Earth’s outer core. In addition, we observe that the transition be-
tween multipolar to dipolar dynamos with high Pm can take a long
period of time as this state can be a meta-stable one whereas the
duration of reversals is observed to be very short for the Earth’s mag-
netic field.

Although, Pm is very low in planetary interiors, magnetic effects
could still prevent zonal flows when the dipole field collapses, as some
other magnetic components continue to act on the flow. Such a me-
chanism is suggested by observations but has not yet been numerically
observed.

Olson and Christensen (2006) estimated Ro, ~ 0.1 for the Earth’s
outer core by using the results of geodynamo simulations (Christensen
and Aubert, 2006). King and Buffett (2013) using the same dataset
noticed that the length scale of the flow follows the viscous scaling law
(VAC: L, < E'/*°D). In other words, the presence of a dynamo-generated
field does not affect significantly the size of the convection cells in these
models. However, strong dipolar fields decrease the relative importance
of inertia by extending the convection cells on a global scale. An esti-
mate of Ro, including the action of magnetic fields is smaller than 0.1 by
several orders of magnitude. In addition, the physical conditions which

Appendix A. Evolution of A with Ra and dynamo bifurcations
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affect Ro, have evolved in past geophysical periods. In particular, the
inner core freezes and its size increases. As a result, convection is then
constrained to develop in a thinner shell in the outer core. As shown by
Schrinner et al. (2012), this induces an increase of Ro,. But, Olson and
Christensen (2006) scenario requires the geodynamo to reside in a
narrow range of Ro,. This requirement seems to be in contradiction with
the physical conditions in the Earth’s outer core, since Ro, < 0.1 and
with its evolution as Ro, has to evolve in time. Here, we do not propose
a new explanation for geomagnetic reversals (see for instance Petrelis
(2009)).

The subcriticality of the dipolar branch in the turbulent regime has
implications for the long-term evolution of the geodynamo. Inner cores
in terrestrial planets freeze over time and heat and light elements are
released at the base of liquid outer cores. Such effects are responsible
for convection motions which induce dynamo action. The growth of
inner cores constrains the convection cells to develop in thinner outer
cores. As shown by Schrinner et al. (2012), inertia effects increase in
this case. In addition, the time evolution of the geometrical constraints
affects also the magnitude of the magnetic Reynolds number which
depends linearly on the shell width. According to our results, two sce-
narios can describe the dramatic evolution of terrestrial magnetism. In
both, dynamo action is ultimately lost since Rm becomes lower than the
turning point, Rm;,, and the magnetic activity fails rapidly. Either this
time evolution takes place with a dominant axial dipole field as the
condition Ro, < 0.1 is still satisfied, or a transition towards a multipolar
dynamo occurs before the loss of dynamo action. In the latter scenario,
zonal flows participate in field generation in the final period. Direct
numerical simulations with important zonal flows have clearly identi-
fied hemispherical dynamos (Grote et al., 2000; Busse and Simitev,
2006; Schrinner et al., 2012). The latter scenario could be relevant in
order to understand the evolution of Mars’ magnetism, as Stanley et al.
(2008) have suggested that hemispherical fields were generated in the
past in the deep martian interior. Subcritical behavior in the early Mars’
core is also proposed by Hori and Wicht (2013) in order to explain the
loss of magnetic activity.
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Previous systematic dynamo numerical studies provide a large table with the values of output parameters. We prefer here to provide additional
figures in order to illustrate our results. These additional figures allow us to provide some details of our numerical experiments. The values of A can
be observed in dynamo bifurcations diagrams. As Morin and Dormy (2009), the control parameter is Ra.

By considering high values of Pm, dynamo action can develop close to the onset of convection (in RI). Fig. A.14 contains dynamo bifurcation
diagrams for the parameters E = 3-1074,Pm = 6 (on panel (a)) and E = 10~4,Pm = 12 (on panel (b)). Regardless of the initial conditions for the
magnetic field, a supercritical dipolar branch is obtained for these parameters. Close to the onset of dynamo action, the field strength saturates with a
low magnitude and simulations with Ra < 180 can be classified as laminar dynamos. We observe an increase of the magnetic energy (measured by
the Elsasser number A) by more than one order of magnitude when Ra is increased from Ra = 160 (2.5Ra.) to Ra = 180 (3Ra,) for E = 10~*. A similar
sharp increase is obtained for E = 3-107*. Such a jump is only observed at low Rayleigh numbers. Then, a further increase of Ra induces a moderate
increase of A. We only observe such sharp variations of A if the laminar regime is explored.

Considering lower values of Pm allows to study the nature of the dynamo bifurcation in RII. Such diagrams are shown in Figs. A.15, A.16, A.17
and A.18. Supercritical bifurcations (Fig. A.17 and panels (a) for Figs. A.15 and A.16) and subcritical bifurcations (Fig. A.18 and panels (b), (c), (d) in
Figs. A.15 and A.16) for the dipolar branch are observed. In the latter bifurcation diagrams, multipolar solutions are also reported. Such dynamos are
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obtained only if the buoyant forcing is high enough (i.e. in RIII).

Fig. A.15 (panel (a)) shows the supercritical bifurcation as obtained by Morin and Dormy (2009) (additional runs with higher Ra have been also
reported). If the Elsasser number A grows rapidly with Ra close to the onset of convection, it increases more slowly for more turbulent flows (with
Ra > 10Ra.). A possible explanation for this behaviour could be that the Lorentz force could play an important role far above the dynamo threshold
and limits the growth of A. From another point of view, the flow properties could be changed significantly by increasing Ra as shown by our
kinematic study. The dynamo action could convert kinetic energy into magnetic energy differently in the laminar regime and in the more turbulent
regimes.

In Fig. A.15 (see panel (b)), a dynamo bifurcation diagram for Pm = 2 is given. For low Ra, supercritical behaviour seems to be obtained as the
magnetic energy is almost proportional to the distance from the dynamo threshold. Surprisingly, A as a function of Ra is not monotonous and it
decreases for sufficiently high Ra values. This behaviour has also been reported by Christensen and Aubert (2006) for E = 3-10™* and Pm = 3. If the
magnitude of the field is initially low (white circles) at low Ra, the magnetic energy grows exponentially with a preferentially dipolar symmetry in
the kinematic phase. Saturation process occurs by changing the velocity field (see Section 5). From a weak initial field, nonlinear dipolar solutions
are generated with Ra < 500. Whereas, for higher Ra (Regime III), the saturation mechanism does not support the dominance of the axial dipole field
and a multipolar dynamo branch exists even if Ro; < 0.1 (multipolar runs have 0.062 < Ro; < 0.095). Since increasing Ra changes the force balance by
promoting inertia, this term must have an important role in the dynamo mechanism for this multipolar branch. This bistable regime can be compared
to that highlighted by Schrinner et al. (2012) in which multipolar dynamos were identified as aw dynamos where the large-scale differential rotation
plays a constructive role through the w-effect. In the present study, no-slip boundaries are used and the large-scale velocity field is mainly controlled
by Ekman layers. The evolution of the magnetic energy with Ra for the multipolar branch suggests supercritical behaviour for the multipolar branch.

For Pm = 1 (see panel (c) in Fig. A.15), we note that the dipolar dynamo with Ra = 340 is only obtained if the initial field is sufficiently strong.
Otherwise, no dynamo can be generated from a weak initial field. This behaviour corresponds to a subcritical bifurcation for the dipolar branch even
if for Ra = 750, the saturated dipolar dynamo can be obtained from a weak field. Then, A increases slowly with Ra while Ro; < 0.1. For Ra = 1750,
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Fig. A.16. Dynamo bifurcation diagrams for E = 3-107°. Symbols are defined in the legend of Fig. A.15.
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Fig. A.17. Magnetic field strength measured by A as a function of the Rayleigh number Ra for dipolar dynamos with E = 10~°. Supercritical bifurcations are observed.

the local Rossby number does not satisfy this criteria and only a multipolar saturated dynamo is stable regardless of the initial field. The dipolar
solution is not restored if Ra is reduced to 1500 from the multipolar solution with Ra = 1750 and hysteretic behaviour is noted. This multipolar
branch exists for 0.60 < Ro; < 0.12. As a result, depending on the initial magnetic conditions, either multipolar dynamos or dipolar dynamos are
finally relevant solutions in the bistable regime corresponding to 0.60 < Ro; < 0.10 for Pm = 1. We again note that A increases linearly with Ra for
the multipolar branch whereas for the dipolar branch, A saturates in the bistable regime in which inertia affects the dynamics.

For Pm = 0.5 and E = 10~ (panel (d)), the bifurcation is clearly subcritical and dynamo solutions only exist in a wedge of Ra. Regardless of the
initial conditions for the field, at Ra = 1000 no dynamo solutions exist, i.e. an initial strong dipolar field can not be maintained in time (cross symbol)
and a weak initial field is not amplified (full circle symbol at A = 0). This point has been reported by Christensen and Aubert (2006) in their Fig. 1. At
Ra = 1000, the local Rossby number is approximately two times lower than the critical value 0.1 which corresponds to the collapse of the dipolar
branch by inertia. Inertia has a negative influence on dynamo action by increasing Rm, in RIII (see kinematic study).

In Fig. A.16, bifurcation diagrams for E = 3-107° are presented. For Pm = 2.5 (see panel(a)), a supercritical bifurcation for the dipolar branch
with A which has a non-simple dependency when Ra < 1000. Otherwise, the non-magnetic flow is in RIII and the field strength increases slowly with
Ra. Very close to the dynamo threshold, three dipolar dynamos are obtained with A < 0.5 and Ra = 310,Ra = 360 and Ra = 400. Then, stronger
variations of A are observed with A higher than unity.

For lower values of Pm and E = 3-107>, subcritical bifurcations are clearly obtained for the dipolar branch while a supercritical multipolar branch
appears when Ra is sufficiently high (see Fig. A.16 panel (b), (c) and (d)). For Pm =1 and the range 460 < Ra < 900 or Pm = 0.5 and the range
700 < Ra < 900, strong initial dipolar fields are necessary for dynamo action as weak fields are not amplified. For Ra = 1100, weak fields are
amplified by a flow in RIIL Even if a field with a multipolar morphology grows in the kinematic phase, the nonlinear solution is finally dominated by
the axial dipolar component. Multipolar solutions appear for higher Ra. For Pm = 0.25 and Ra = 3000, no dipolar dynamo can be maintained as Ro,
exceeds the critical value 0.12. Since a large range of Ra is studied up to the dipole collapse by inertia, we observe saturation of A in RIII.

For E = 107> and Pm = 1 or Pm = 2, the field strength increases rapidly when Ra is close to the dynamo threshold (see Fig. A.17). For these
values, the bifurcations are supercritical and the dynamo onset can be approached. RIII is explored for E = 10~ with Ra > 2000. In this case, the
increase of A depends slightly on Ra for Pm = 1 and Pm = 2. At lower values of Pm, the bifurcation for the dipolar branch is subcritical (see Fig.
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Fig. A.18. Magnetic field strength measured by A as a function of the Rayleigh number Ra with E = 10~>. The observed behaviour corresponds to subcritical bifurcations.

A.18) and multipolar solutions are also obtained in the turbulent regime. The growth of A is still less important for the dipolar branch as the non-
magnetic flow is in the turbulent regime.

For Pm = 0.5 and E = 107>, only one solution with A = 0 (kinematically stable) is reported in Fig. A.18 for Ra = 720. However, for Ra = 800 and
Ra = 1000, dynamo simulations with weak initial fields were tested. The magnetic energies increase with growth rates close to zero and attaining
saturation would require a very long time integration. At Ra = 1500 and Ra = 3000, transitions from multipolar to dipolar solutions are observed, as
is the transition shown in Fig. B.19.

Appendix B. Temporal evolution of geodynamo simulations

In Fig. B.19, the time evolution of kinetic and magnetic energies is shown for the parameters E = 3-107%,Ra = 450 = 7.4Ra. and Pm = 6. A dipolar
solution finally sets in even when a weak initial field was considered. Such a behaviour correspond to crossed out squares in Fig. 5. In the kinematic
phase, different magnetic modes are amplified. The kinematic phase ends when the magnetic energy reaches a plateau at t = 34. This state takes
place for a period of two in units of viscous diffusion time. In this period, the axial dipole field does not dominate and the dynamo could be identified
as a multipolar dynamo. But, the axial dipole mode finally grows giving rise to a dipolar solution. The transition described here corresponds to a
multipolar/dipolar transition where the multipolar phase is a transient state. Only one example of such a transition is reported in Fig. B.19 but
several were obtained and operate similarly.

In RIIIL, by considering a weak initial field we observe the existence of multipolar dynamo solutions which have been integrated for a period of
time longer than one magnetic diffusion time (see Fig. B.20) even if the local Rossby number is lower than 0.1 i.e. in the usual dipolar regime (see
Christensen and Aubert, 2006). Such dynamos are typical for simulations performed in RIII with a weak initial field and Rm slightly above Rm.. The
relative importance of zonal flows increases as the Ekman number decreases (see the hydrodynamical study). In these models, we observe periodic
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Fig. B.19. Typical behaviour for a dipolar dynamo obtained with a weak initial field. (a) Magnetic (red) and kinetic (black) energies as a function of time. (b) the label ax. tor. | = 1,m = 0
corresponds to the kinetic toroidal mode with the spherical decomposition = 1 and m = 0. For this simulation, the parameters are E = 3-10~4,Pm = 6 and Ra = 450 = 7.4Ra,.
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Fig. B.22. Illusation of the hysteretic behavior observed when the buoyant forcing Ra is varied such that the local Rossby number Ro, shifts from one regime (dipolar Ro, < 0.12 or
multipolar Ro, > 0.12) to another. The other parameters for this models are E = 3-10™> and Pm = 0.25. The vertical lines mark a variation of the buoyant forcing Ra.

reversals of the axial dipole component. An example of such models is shown in Fig. B.21. The importance of the dipolar mode as measured by the
dipole field strength can be dominant (when f;, exceeds or approaches 0.5).

In Fig. B.22, magnetic and kinetic energies as a function of time are given for a numerical experiment which shows the existence of a hysteretic
behavior when the buoyant forcing is varied. In the dipolar regime (Ro, < 0.12), a strong initial dipolar field is maintained in time. The axial dipole
collapses when Ra is increased as Ro, crosses the transitional value and the magnetic energy (or A) decreases significantly. For these parameters, the
multipolar solution appears to be the only stable solution. Important zonal flows develop close to the dynamo threshold when the Ekman number is
sufficiently low. If the Rayleigh number is decreased from the multipolar solution Ra = 35.3Ra, to its initial value (Ra = 31.75Ra,.), the dipolar
configuration is not obtained. We cannot exclude that this multipolar solution with Ro, < 0.12 is a transient state. However, this multipolar solution
is maintained longer than one magnetic diffusion time. Most of our models were integrated over one magnetic diffusion time. For some cases, longer
time integration periods were considered.
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