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Abstract.

Magnetic fields are present in many different astrophysical objects, such as accretion discs, stars,
and planets. They influence the evolution and dominate the interior dynamics of these objects, in
particular their evolutionary stages. The presence of a weak (subthermal) magnetic field plays a
crucial role to drive turbulence in accretion discs thus leading to the stresses needed for accretion
and angular momentum transport. This instability is known as the MagnetoRotational Instability
(MRI) and it has been studied intensively for the last two decades. Recent numerical results show
the importance of understanding the dynamo process in accretion discs. Small-scale dynamo action
could prevent the saturation of MRI modes whereas the generation of large-scale magnetic fields
provides a suitable coherent field for the angular-momentum transport by MRI modes. Observations
show a huge variety of stellar and planetary magnetic fields. Cosmic magnetic fields differ in their
magnitude, topology and time dependence. Of particular interest is the understanding of cyclic
field variations, as known from the Sun. They are often explained by an important Q effect, i.e.,
by the stretching of field lines because of strong differential rotation. We computed the dynamo
coefficients for an oscillatory dynamo model with the help of the so-called test-field method. We
argue that this example is of a?Q-type and here the Q-effect alone is not responsible for its cyclic
time variation. More general conditions which lead to dynamo waves in global direct numerical
simulations are presented. Zonal flows driven by convection in planetary interiors may lead to
secondary instabilities. We showed that a simple, modified version of the MRI (so-called MS-
MRI) can develop in the Earth’s outer liquid core (Petitdemange, Dormy, Balbus, GRL,35, 2008).
The force balance in the Earth’s core and in classical astrophysical applications of the MRI (such
as gaseous discs around stars) is different. The weak differential rotation in planetary interiors
yields an instability by its constructive interaction with the much larger rotation rate of the planets.
The resulting destabilizing mechanism is just strong enough to counteract the stabilizing resistive
effects, and to produce growth on geophysically interesting time scales. MRI and dynamo action
are both interesting in their own right, however, their interaction is crucial in order to understand the
dynamics of accretion discs, stellar and planetary interiors.
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INTRODUCTION

Magnetic fields are present in a wide variety of astrophysical objects: planets, stars,

accretion disks, Active Galactic Nuclei . ... For instance, they are known to influence

all evolutionary stages of stars from collapsing molecular clouds which induce stars

and planets, to supernovae, degenerate white dwarfs and neutron stars. However, if their
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impotance is of primary interest, the dynamics and even the origin of magnetic fields
are still opened questions. Dynamo action must take place in order to maintain the
magnetic activity against the ohmic dissipation for objects having moderate magnetic
Reynolds numbers as planetary interiors. Even if the dissipation coefficients are weak
in stellar interiors, we have to understand the physical mechanisms responsible for the
observed cyclic time variations of the solar magnetic field. Thanks to the recent progress
in detection, a wide variety of magnetic activity is observed (Donati & Landstreet 2009).

The ordered magnetic activities in the universe (for galaxies clusters, galaxies, stars,
planets...) originate from dynamo action. In the mean-field formalism, differential
rotation can be an important ingredient of this process through the Q effect. The Q
effect consists of a distortion of poloidal magnetic field lines into toroidal components.
The dynamo loop is closed by the o effect which generates polodial fields from the
toroidal fields if the velocity field is complex enough (Moffatt 1978). This particular
dynamo loop is termed €2 dynamo and it is thought to occur in differentially rotating
systems. More subtle mechanisms induced by a large scale differential rotation exist
(Brandenburg & Subramanian 2005, Ridler & Briuer 1987).

In astrophysical objects, the Reynolds numbers associated with the flows are so huge
that turbulence develops and induces an important random flow having no coherence.
However, many examples show that an additional coherent flow is induced by particular
constraints. Thin accretion disks are differentially rotating systems where the massive
central object imposes its gravitational potential. As a result, the rotation law in the
accretion disk is close to the Keplerian rotation law (see King & Raine’s book). The
solar differential rotation is known in great detail from helioseismology and serves as
an important observational constraint for simulations of thermal convection in rotating
spherical shells. The solar differential rotation profile can be directly deduced from a
force balance between Coriolis force, pressure gradient and buoyancy term (thermal
wind balance). Balbus et al. (2009) provide theoretical arguments in order to explain
the observed rotation profile in the solar convective zone (see also Kiiker et al. 2011).
Coherent flows also develop in planetary interiors which are rapidly rotating systems
strongly affected by the Coriolis force. Convective motions develop in the form of
elongated columns (see e.g. Busse 2002). In the geophysical context, Petitdemange et al.
(2008) (noted PDBO0S8) showed that even if the differential rotation is weak, it can drive
seondary MHD instability in the Magnetostrophic regime which is relevant in planetary
interiors.

We focus here on the action of radial differential rotation. Either the angular velocity
decreases outwardly (dQ/ds < 0, as it does in Keplerian accretion disks) or it increases
with the radius s (dQ/ds > 0) as it does in the equatorial plane of the solar convective
zone. In both cases, the differential rotation induces an Q effect. But if dQ/ds < 0, a
weak magnetic field can have a crucial role and trigger turbulence. In this manuscript,
we highlight successively the action of the differential rotation in planetary and stellar
interiors when dQ/ds < 0 and when dQ/ds > 0.

Many years of numerical simulations of accretion disks have allowed us to improve
our understanding of turbulence driven by the Magnetorotational Instability (MRI). This
MHD instability was developed by S. Balbus & J. Hawley (1991) for its crucial role
in Keplerian accretion disks. In these systems, shear flow results from a rotation law
imposed by the massive central object. The non-linear development of this instability has
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been extensively studied (see Balbus & Hawley 1998, Balbus 2003 for useful reviews).
Dynamo activity in turbulence driven by the MRI has been studied by Hawley, Gammie,
Balbus 1996 and is now an active subject of research. In general, the MRI is widely
viewed as the most likely origin for the turbulence that is needed to allow accretion
to proceed in astrophysical disks. But disks are not the only MRI venue. The MRI
results from the destabilizing action of a weak magnetic field on an outwardly decreasing
angular velocity field, and these conditions are very common. They ensure that the MRI
is relevant not only for our understanding of accretion disks, but for many other objects
of widely different length scales as well. On the largest scales, the MRI has been invoked
to explain turbulence in HI gas in galaxies (Sellwood & Balbus 1999). On the smallest
scales, the MRI may be involved with influencing the magnetic activity in planetary
cores (Petitdemange et al. 2008). In stellar interiors, Arlt e/ al. (2004) argued that the
MRI could act to reduce the large-scale shear.

SHEAR AND CONVECTION IN SPHERICAL SHELL

Approximations and equations

In this manuscript, we present numerical results obtained in solving MagnetoHydro-
dynamic (MHD) equations in the Boussinesq approximation

E(du+(u-Viu) = —Vr+FEAu—2e,xu (1)
+Rar£9 + P (VxB)xB )

0
B = Vx(uxB)+P,'AB (3)
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where the Ekman number, the Rayleigh number, the magnetic Prandtl number and the
thermal Prandtl number are used and define respectively as

A% oreATD \% \%
Ra=2T8227  and P, =—. P=— 6)

E=——
Q0D2 ’ “a v n

The unit vector e, indicates the direction of the rotation axis and gravity varies linearly
with the radius r. v denotes the kinematic viscosity, K the thermal diffusivity, ar the
thermal expansivity and g gravity at the outer radius R,, Qg the rotation rate, D the
shell width, AT stands for the temperature difference between the spherical boundaries.
The classical model for geodynamo simulations (Christensen et al. 2001) consists of
convection driven by an imposed temperature gradient between the inner and the outer
shell boundary, at which the temperature is fixed. The mechanical boundary conditions
are no-slip at the boundaries. Moreover, the magnetic field is assumed to continue as
a potential field outside the fluid shell. In our model, we use these equations for the
velocity u, the magnetic field B and the temperature perturbation 8 with the help of the
PaRoDy code (Dormy et al. 1998).
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The Boussinesq approximation consists of ignoring the density variation except in
the buoyancy term. This approximation seems to be justified in planetary interiors as
in the iron liquid of the Earth’s outer core where the density stratification covers less
than one scale height and the fluid can be treated as incompressible. The Boussinesq
approximation seems to fail in stellar interiors where the anelastic approximation takes
the density stratification of the gas into account. However, we do not consider such com-
pressible effects in this manuscript. The main motivation for considering the Boussinesq
approximation is that stellar and planetary interiors must share some fundamental phys-
ical properties leading to the maintainance of the magnetic activity. In addition, 15 years
of active research on Boussinesq simulations has shown their ability to reproduce nu-
merically many features of the Earth’s magnetic field and planetary fields (Christensen
et al. 1998, 1999; Busse et al. 1998, Takahashi et al. 2005, Christensen & Wicht 2007,
Christensen 2009, Christensen 2011). Possible field generation mechanisms in planetary
conducting zones have been identified and investigated by Olson et al. (1999). Progress
both in numerical methods as well as in parallel machine architecture has made it pos-
sible to explore an extensive parameter space and to determine scaling laws for some
features of planetary fields (Christensen & Aubert 2006, Christensen al. 2009). Among
them is the magnetic field strength, which is predicted to scale with the available en-
ergy flux to the power of 1/3, independent of rotation rate. Surprisingly, this scaling
law also explains the field strenght observed for rapidly rotating low-mass stars. This
finding supports the validity of considering Boussinesq simulations for studying stellar
dynamos.

Considering the Boussinesq approximation allows us to compare our results with the
state of research of geodynamo numerical models. In addition, ignoring compressible
effects except in the buoyancy term reduces the complexity of MHD equations, which
is desirable from a numerical point of view.

Zonal flows in rapidly rotating spherical shell

The Earth’s core and planetary interiors are, by comparison to accretion disks, rela-
tively small objects, in which resistive effects are on an equal footing with dynamical
processes. The rotation properties of the Earth also significantly differ from those of
an accretion disk. To leading order, they correspond to solid body rotation, with only
a weak differential rotation. Planetary interiors are rapidly rotating systems where the
Coriolis force plays an important role. The dimensionless parameters provide a good es-
timate of dynamical proceses. For the Earth’s outer core, the Ekman number is so small
(~ 10_]5) that, at leading order, the viscous term and the inertial term do not enter in
the force balance. The Coriolis force is only balanced by the pressure gradient term, the
Lorentz force and the buoyant term.

Theoretical constraints result from this particular force balance taking place in plan-
etary interiors. Taylor’s constraint (Taylor 1964) can be interpreted as that the net mag-
netic torque on each cylinder must vanish. The Coriolis force acts to organize the flow
and make it constant on cylinders parallel to the rotation axis (geostrophic or zonal flow).
This constraint is known as the Proudman-Taylor constraint (Proudman 1956, Stewart-
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son 1966). The Lorentz force and the Buoyancy force can break down this constraint.
But, analytical (Busse 1975) and numerical (Olson et al. 1999, Grote & Busse 2001,
Christensen 2002, Aubert 2005) studies in agreement with observations (Paris & Hu-
lot 2000, Finlay & Jackson 2003) showed that the geostrophic constraint is robust in the
Earth’s outer core. Besides surface flow reconstructions, the only (indirect) observational
evidence for such shear is inferred from seismological data that have been interpreted
as rotation of the solid inner core at a rate of about 0.15 degrees per year relative to the
mantle (Vidale er al. 2000). There are no observational constraints on the way the cor-
responding jump in angular velocity is actually accomodated by the flow (spread across
the whole core radius or localised in a narrow shear layer).

The excitation of differential rotation in simulations of thermal convection in rapidly
rotating, spherical shells has been studied in detail in order to explain the patterns of
prograde and retrograde zonal flows observed at the surface of giant planets (Christensen
2002, Jones & Kuzanyan 2009). In these studies, stress free mechanical boundary
conditions have been applied. Differential rotation occurs in the form of differentially
rotating cylinders concentric to the rotation axis. An eastward zonal flow near the
equator accompanied by westward jets at higher latitudes is a robust feature found in
these simulations. Christensen (2002) identified a dynamical regime where viscosity is
negligible and the force balance is mainly among the Coriolis, inertia and buoyancy
forces. Furthermore, he derived scaling laws in this regime, predicting the strength of
the mean zonal flow depending on the available heat flux. Although compressibility is
important in the hydrogen envelops of giant planets, these scaling laws derived in the
Boussinesq approximation predict the observed order of magnitude of zonal flows at
their surfaces rather well.

THE MAGNETOSTROPHIC-MRI

In this section, we focus on the action of an outwardly decreasing angular velocity profile
on the planetary fields.

MRI in planetary interiors: linear development

In Petitdemange, Dormy & Balbus (2008) (hereafter noted PDBO0S), it is shown that a
simple modified version of the MRI can develop in a fluid environment modeled on the
geodynamo. They carried out a local linear calculation of the problem in the resistive,
Magnetostrophic regime, in which the Coriolis force is predominantly balanced by the
magnetic Lorentz force over the course of the development of the instability, and resis-
tive losses are important in the induction equation. As noted by Acheson & Hide (1973),
the magnetostrophic regime is very particular: taken separately, rotation effect and mag-
netic tension each has a stabilizing effect, but together these proccesses destabilize one
other. The result is the MS-MRI.

According to Roberts & Gubbins (1986), the toroidal component could exceed the
poloidal one by a factor R,, in the Earth outer core (R, ~ 100), where R,, is the magnetic
Reynolds number. The fact that the toroidal component may largely exceed the poloidal
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FIGURE 1. Development of the magnetostrophic MRI. (a) Unperturbed field line. (b) Field line is
distorted by a radially outward displacement, and subject to velocity shear. (c) Field line develops
azimuthal tension which is immediately compensated by the Coriolis force. This compensating force
requires a further displacement in the same sense of the initial outward radial extension, and the instability
proceeds.

one in planetary interiors, led previous linear stability analyses to be mainly performed
in the simplified case of a purely toroidal applied field (Acheson & Hide 1973, Fearn
1983a,b, Fearn 1984, Fearn 1985, Fearn 1988, Fearn 1994). But in previous calculations
the emphasis has been upon purely azimuthal fields, non-axisymmetric disturbances, and
magnetic instabilities. By contrast, in PDB0S, the magnetic coupling is to the poloidal
field components, axisymmetric disturbances are front and center, and the instability,
while relying on the presence of a magnetic field, has its seat of free energy entirely in
differential rotation.

In planets, the classical MRI manifests itself in a new parameter regime, which we
have dubbed the magnetostrophic MRI (MS-MRI). This results of an initial local WKB
study has been confirmed by linear numerical simulations. The physical mechanism
of the MS-MRI is visible on the figure 1 In contrast with accretion disks, the rotation
profile in planetary interiors is very close to solid body rotation, the shear is very small.
This coupled with high resistivity, may suggest that planetary interiors are not promising
candidates for the MRI. But even with a relatively small amount of differential rotation,
it was found that the instability can occur. The figure 2 shows the linear development
of the MS-MRI with the characteristic phase differences between the radial velocity
and magnetic field components clearly visible. It is thought that the MS-MRI could, in
principle, explain some rapid variations of the magnetic field such as magnetic impulses
(or “jerks”), as well as the classical magnetic secular variation.

The MS-MRI needs the emergence of shear to exist. Convection instability is the
primary instability which develops zonal flows and a helical velocity field which gives
rise to dynamo action. In this context, the MS-MRI appears as a secondary instability.
Analytical and numerical studies of MS-MRI modes have not taken into account the
possibility of dynamical coupling between MS-MRI modes and the heat transport. Only
the action of convection has been considered accross the presence of differential rotation.
The Buoyancy force and the temperature equation have been ignored.
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FIGURE 2. Snapshot of the most unstable mode in a direct simulation with E = 510~7, A = 3 and
P,, = 0.5. The physical mechanism of the magnetostrophic-MRI can be traced in the phase shifts between
Vs, by and by by is a quarter-period ahead of v,, while by is exactly out of phase by half a period with b;.

Action of axisymmetric MS-MRI modes in planetary interiors

A nonlinear follow-up axisymmetric calculation is presented in Petitdemange (2010).
After linear perturbations increase exponentially with time, saturation occurs by a mod-
ification of the background shear rate. In the context of the classical MRI, this result is
somewhat novel: the rotation profile of an accretion disks is always very close to Ke-
plerian. But in the geophysical context, it is well-known that MHD effects can create
a geostrophic flow (Braginsky 1975, Fearn & Proctor 1983; Fearn 1994, Jault 1995).
We observe numerically the development of such a geostrophic flow when the initial
small perturbations reach a certain critical magnitude. This flow progressively reduces
the initial sheared velocity field and produces saturation of the MS-MRI. The shear rate
then continues to decrease until the system becomes marginally stable (see the figure 3).
In fact, different MS-MRI modes develop successively, each saturating by incrementally
decreasing the shear. In this sense, the MS-MRI may even be able to regulate differential
rotation in planetary cores.

Petitdemange (2010) illustrated this mechanism, motivated by the banded structure
observed in Jupiter’s atmosphere (Porco et al 2003, Cho and Polvani 1996). In particular,
he argued against the possibility of an origin of these structures in deep layers, where
the fluid is electrically conducting (metallic hydrogen), and therefore influenced by
the presence of a magnetic field (Yano 1994, Morin & Dormy 2005, Christensen et
al 2001, Aurnou & Olson 2001). Numerical simulations of convection (Heimpel et
al. 2005) showed that the zonal wind resembles the banded structure of Jupiter and
Saturn for high enough Rayleigh numbers. However, such a banded structure in the inner
conducting region would be unstable in the presence of vertical magnetic field. Indeed,
considering the O-profile of angular velocity observed in the Jovian atmosphere, and
assuming a geostrophic sturcture (€, (s) = Uy(s)/s where s is the cylindrical radius),
linear analysis predicts that all bands are locally unstable when a vertical magnetic field
is imposed at sufficiently small Ekman numbers. Realistic Ekman number can however
not be achieved. Instead, Petitdemange (2010) solved the linearized MHD equations
with A = 1 and different Ekman numbers. For small enough Ekman numbers (smaller
than 5- 1077, he showed that the MS-MRI can destabilize all bands.
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FIGURE 3. Temporal evolution of the maximum R, for different P,. The other parameters are E =
1075, A=1and A =0.01.

In the nonlinear regime, the bands are progressively suppressed. The forced velocity
field used for this simulation has the form Up(s) = s€.,(s). The boundary conditions
and the initial conditions are unchanged. The simulation has been terminated when sat-
uration starts to set in. The profile has been modified within a very short time period. In
this context, the MS-MRI could provide a new constraint on the flow. This would sug-
gest that the observed Jovian banded structure cannot be maintained in the conducting
zone, because it would then be unstable to the MS-MRI. This result suggests that either
the origin of the banded structure is not deep, or convection is powerful enough to main-
tain the profile against this destabilizing process. In the latter case, the system remains
unstable, and the MS-MRI could then play an important role in the dynamo process. As
mentioned in PDBO08, this could induce rapid variations of the magnetic field.

ACTION OF LARGE-SCALE ZONAL FLOWS IN OSCILLATORY
DYNAMO MODELS

In this section, we investigate the role of a large-scale zonal flow for dynamo action.
We consider the full Boussinesq MHD equations and we are in particular interested
in understanding the mechanism of oscillatory dynamos. Their origin as well as the
reason for their time variation are still open questions of primary importance in order to
understand recent stellar magnetic observations (Donati & Landstreet 2009, Morin et al.
2010).

Via the Lorentz force, the magnetic field acts back on the flow and the dynamo
problem is intrinsically nonlinear. This is the reason why we focus our attention on
saturated dynamos obtained in direct numerical simulations.
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FIGURE 4. Azimuthally and time-averaged zonal flows for models with different aspect ratios (Ri/Ro).

A transition from steady (Earth-like) to oscillatory (Sun-like) dynamos in direct nu-
merical simulations can be obtained by decreasing the width of the convection zone:
Goudard & Dormy (2008) found oscillatory models with high aspect ratio. Schrinner,
Petitdemange, Dormy (2011), followed their approach and analysed the dynamo mech-
anism for these oscillatory models. In particular, the question whether an Q effect is
responsible for the cyclic variation of the magnetic field was addressed. The magnetic
field in these simulations turned out to be weak, small scaled and of either dipolar or
quadrupolar symmetry. Traditionally, the dynamo mechanism is thought to be differ-
ent for oscillatory and steady dynamos. For both types of dynamos, the generation of
poloidal field results from the interaction of helical turbulence with the toroidal field («
effect). Most steady, dipolar dynamos are classified as o> dynamos, i.e. the generation
of toroidal field from poloidal field results from the same « effect (Olson et al. 1999,
Schrinner et al. 2007). But, for oscillatory dynamos, the generation of toroidal field is
believed to originate from the Q effect.

However, a strong differential rotation is not a necessary condition for oscillatory
dynamos as has been demonstrated in several papers presenting models based on the
mean-field approach (see e.g. Riddler & Briuer 1987; Baryshnikova & Shukurov 1987;
Schubert & Zhang 2000; Riidiger et al. 2003; Stefani & Gerbeth 2003; Mitra al. 2010).
The success of mean-field models in reproducing solar-like variations of the magnetic
field relies partly on the large number of free parameters, i.e. on the arbitrary determina-
tion of the dynamo coefficients. In Schrinner et al. (2011), we determined the dynamo
coefficients for the first time from direct numerical simulations with the help of the
test-field method (Schrinner et al. 2005, 2007, Schrinner 2011). The application of the
obtained dynamo coefficients in a mean-field model reveals their importance for the
generation of the magnetic field.

Our model is set up as described in Goudard & Dormy (2008). Only the mechanical
boundary condition at the outer sphere is modified compared to classical geodynamo
simulations in order to mimic the stress-free condition at the solar surface. The dimen-
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sionless parameters were fixed at: £ = 1073, P, =5,R, =100 and P. = 1, and different
aspect ratios X were considered (the aspect ratio X is defined as the ratio of the inner Ri
to the outer Ro shell radius). We reproduced the results obtained by Goudard & Dormy
(2008) and observed a transition from a steady, dipolar (Earth-like) dynamo to an os-
cillatory (Solar-like) dynamo by increasing the aspect ratio. The corresponding mean
flows are shown in figure 4. A large scale geostrophic differential rotation is obtained
for the oscillatory dynamo with an aspect ratio of X = 0.65 wheras the mean flows cor-
responding to steady and dipolar dynamos (for 0.35 < X < 0.65) do not exhibit contours
of the mean zonal flow constant on cylinders. This result could suggest that the differen-
tial rotation is directly responsible for the oscillatory behavior. The determination of the
equivalent dynamo coefficients allows us to reveal the physical mechanisms responsible
for the dynamo loop.

A mean-field calculation based on the dynamo coefficients and the mean flow deter-
mined from the self-consistent model is presented in the bottom line of figure 5. The
fastest growing eigenmodes form a conjugate complex pair and give rise to a dynamo
wave that nicely compares with the direct numerical simulations. We found that the os-
cillatory dynamo is of a?Q type. It means that the Q effect induced by the differential
rotation is not directly responible for the observed oscillatory behavior. If we artificially
suppress the Q effect in a mean field calculation, the oscillatory behavior persists. Sur-
prisingly, the corresponding €2 dynamo is, however, steady and dipolar.

Moreover, it is shown in the figure 5 that the calculation based on the mean field
coefficients produces a butterfly diagram which is consistent with the corresponding
direct numerical simulation. This indicates that the physical mechanisms responsible for
the oscillatory behavior in the direct numerical simulation are well captured by the mean
field calculation.

The frequency and the propagation direction of the dynamo wave visible in figure 5
strongly depend on the differential rotation, in agreement with Busse & Simitev (2006).
Schrinner al (2011) follow their approach and give an estimate for the cycle frequency
by applying Parker’s plane layer formalism (Parker 1955). We highlighted that the
magnitude of the differential rotation determines the frequency and the propagation
direction of the resulting dynamo waves.

CONCLUDING REMARKS

The study of the action of large-scale radial shear on magnetic activity of stars and
planets is of primary interest in order to understand the observations. When the angular
velocity increases outward, MRI modes can develop even if the shear rate is weak in
planetary interiors. Such modes are not responsible for dynamo action but they could
induce short temporal evolution of the magnetic field at the Earth’s surface or influence
the secular variation.

Nonlinear simulations revealed that MRI modes in planetary interiors could regulate
the angular momentum distribution in the dynamo zone. Convection creates large-scale
zonal flows in rapidly rotating systems as planets and low-mass stars. If the radial shear
becomes strong enough, MRI modes develop and act to decrease the large-scale shear
rate. The action of MRI in planetary interiors has only been investigated so far using
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FIGURE 5. Azimuthally averaged radial magnetic field at the outer shell boundary varying with time
(butterfly diagram) resulting from a selfconsistent calculation (top) and mean-field calculation (bottom).
The contour plots were normalised by their maximum absolute value at each time step considered. The

colour-coding ranges from —1, white, to +1, black.

very simple analytical and numerical models (Petitdemange et al. 2008, Petitdemange
2010) and additional studies using more realistic models, considering axisymmetric and
non-axisymmetric MS-MRI modes, are desirable and in preparation.

MRI modes could also develop in stellar interiors under some particular configura-
tions. However, the angular velocity profile in the solar convection zone, as shown by
heliosismology is not suitable for such an instability as a global process. In the equa-
torial plane, the angular velocity increases with radius. In this context, it is essential to
investigate the action of large-scale shear on dynamo action.

A particular dynamo mechanism does not seem to be responsible for the occurrence of
periodically time-dependent magnetic fields. It turns out that the influence of the large-
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scale radial shear (the Q effect) is not necessary for cyclic field variations. Instead, the
action of small-scale convection turns out to be essential. For the model presented in
Goudard & Dormy (2008) and in Schrinner el al. (2011), small convective length scales
are forced by a thin convection zone. Additional investigations are needed to assess
whether the mechanism is relevant to a wider class of oscillatory models.
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