LERMA UMR8112

Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères



Home > en > Research > Interstellar medium and Plasmas > Turbulence & magnetic field

Turbulence & magnetic field

published on , updated on

The interstellar medium is the main ingredient, actor, and tracer of the formation of new stars and planetary systems in galaxies. One of the most important query in the field is to understand how the dynamical, magnetic, chemical, and thermal properties of the medium, which are tightly coupled to each other, drive its collapse from its most diffuse states down to environments with stellar densities ; and how they control the chemical evolution of the matter, from the most simple molecules to the production of complex organic and prebiotic species.

JPEG - 995.2 ko

How can we explain the presence of molecules in diffuse irradiated environments, where UV photons are suppose to efficiently break molecular bounds ? What combination of microphysical and macroscopic processes is responsible for the formation of complex structures, from the galactic scales down to the mean free path of atoms and molecules ? What is the nature of turbulence in the interstellar medium ? What are its main energy sources and how is it dissipated ? At last, what impact does the magnetic field have on the formation of density structures and on the dynamics of chemical compounds ? Such are the questions which interest our team.

The understanding of all these processes raise, however, several modeling difficulties. Following the time-dependent evolution of hundreds of species in a three dimensional space cannot be achieved numerically, even with the most advanced computer cluster, because the scales involved range over several orders of magnitude. Our team thus applies two complementary approaches: the development of numerical simulations which describe the dynamical evolution of interstellar matter in three dimensions ; and the conception of modeling tools which treat hundreds of physical processes and their coupling in systems at lower dimensions. Our work also includes the reduction and the analysis of observations obtained in the framework of international collaboration with (most recently) the Herschel, Planck, SOFIA, and ALMA telescopes.


Find below a few of our most recent results.


Filaments of matter and magnetic field

Recent observations with the Herschel space telescope have revealed the presence of filaments of matter in molecular clouds. In addition, studies of the polarization of the dust thermal emission has given access to the orientation of the magnetic field in interstellar environments. All these observations show that the magnetic field is aligned with the most diffuse filaments and orthogonal to those with the largest density, a trend in accordance with the results of many numerical simulations. Those links between density structures and the magnetic field open new perspectives regarding the formation of interstellar filaments and their evolution towards gravitationally-unstable entities which potentially lead to the birth of new stars.

JPEG - 551.8 ko


Dissipative scales of turbulence

The dissipation of turbulent energy play a decisive role in the chemical enrichment of the diffuse interstellar gas. In order to assess the dynamical and statistical properties of the dissipation, we have developed and run MHD simulations of decaying turbulence with viscous, ohmic, and ambipolar diffusion. This work shows that 60% of the dissipation occur in 10% of the entire volume and that the viscous diffusion is dominated by incompressible motions. The dissipation takes place in coherent structures characterized by their fractal dimension, that couple different scales of the flow and which have important effects on many observable quantities (e.g. velocity increments).

JPEG - 701.3 ko


Modeling the coupling between dynamics and chemistry

The TDR model developed by our team is a state-of-the-art numerical code designed to treat the chemical evolution of the dissipative structures of interstellar turbulence. The code was used to interpret the observations of many molecules recently observed in the diffuse medium. The comparison with the model predictions shows that turbulent dissipation is sufficient to explain the chemical richness of the gas, in particular the large abundances of CO, HCO+, CH+, and SH+. In addition, simultaneous analysis of couple of species lead to fundamental properties of the dissipation including the energy transfer rate, the timescale of dissipation, and the degree of fragmentation of interstellar matter.

JPEG - 457.4 ko


Observation of the diffuse galactic matter

In the framework of the international key program PRISMAS of the Herschel space telescope, we have performed an exhaustive spectroscopic analysis of the diffuse interstellar gas seen in absorption. Our most recent work was dedicated to the fine structure lines of ionized carbon and nitrogen. The detection of the [NII] line confirms the large filling factor of the warm ionized medium (WIM) and indicates that the WIM contributes to about 5% of [CII] absorption. The study of absorption lines of HF and p-H2O corroborates the idea that these species can be used as tracers of H2. At last, the analysis of OH+, H2O+, and H3O+ confirms previous data which show that the cosmic ray ionization rate is far larger in the diffuse gas than in the dense structures.


Recent or significant publications

Gerin, M.;, Ruaud, M.; Goicoechea, J.; et al., 2015, A&A, 573, A30
Indriolo, N.; Neufeld, D.A.; Gerin, M.; et al. 2015, ApJ, 800, 40
Montier, L.; Plaszczynski, S.; Levrier, F.; et al., 2015, A&A, 574, 135
Montier, L.; Plaszczynski, S.; Levrier, F.; et al., 2015, A&A, 574, 136
Planck intermediate results. XIX. Planck Collaboration, A&A, 2015, 576, 104
Planck intermediate results. XX. Planck Collaboration, A&A, 576, 2015,105
Planck intermediate results. XXXV. Planck Collaboration, A&A in press
Neufeld, D. A.; Black, J.; Gerin, M.; et al., 2015 ApJ 807, 54
Neufeld, D.A.; Godard, B.; Gerin, M.; et al., 2015, A&A 577, A49
Godard, B.; Falgarone, E.; Pineau des Forêts, G., 2014, A&A, 570, A27
Hennebelle, P.; Falgarone, E., 2012, ARAA, 20, 55
Lesaffre, P.; Pineau des Forêts, G.; Godard, B.; et al., 2013, A&A, 550, 106
Levrier, F.; Le Petit, F.; Hennebelle, P.; et al., 2012, A&A, 544, 22
Momferratos, G.; Lesaffre, P.; Falgarone, E.; et al, 2014, MNRAS, 443, 86
Persson, C.; Gerin, M.; Mookerjea, B.; et al., 2014, A&A 568, A37
Zaroubi, S.; Jelić, V.; de Bruyn, A. G.; et al., 2015, MNRAS, 454, L46


Team members

Berthet Manuel

Falgarone Edith

Gerin Maryvonne

Godard Benjamin

Gusdorf Antoine

Lesaffre Pierre

Levrier François

Ngoc Le Tram

Pérault Michel

Orkisz Jan

Rabasse Jean-François

Séminaires à venir

Vendredi 23 octobre 2020, 14h00
téléconférence Zoom,
The role of molecular filaments in the origin of the IMF
Philippe ANDRÉ
CEA, Laboratoire d’Astrophysique AIM Paris-Saclay
résumé :
The origin of the stellar initial mass function (IMF) is one of the most debated
issues in astrophysics. I will discuss new insights into this problem based on a systematic census of prestellar cores and molecular filaments in nearby clouds taken as part of the Herschel Gould Belt survey, as well as higher-resolution observations with APEX/ArTéMiS and ALMA. Our results point to the key role of the quasi-universal filamentary structure pervading molecular clouds. They suggest that the dense cores making up the peak of the prestellar core mass function (CMF) - and indirectly the peak of the IMF - result from gravitational fragmentation of molecular filaments near the critical mass per unit length. The Salpeter power-law tail of the CMF/IMF may be at least partly inherited from the filament line mass function (FLMF), which is observed to follow a Salpeter-like power law in the regime of thermally supercritical filaments.

 
Vendredi 4 décembre 2020, 14h00
via Zoom, Paris
Simulating galaxies at high resolution in their cosmological context with NewHorizon: methods and some key results on galaxy properties and their morphology
Yohan DUBOIS
Institut d'Astrophysique de Paris
résumé :
Hydrodynamical cosmological simulations are increasing their level of realism by considering more physical processes, having more resolution or larger statistics. However, one usually has to either sacrifice the statistical power of such simulations or the resolution reach within galaxies. I will introduce the NewHorizon project where a zoom-in region of ~(16 Mpc)^3, larger than a standard zoom-in region around a single halo, embedded in a larger box is simulated at high resolution. A resolution of up to 34 pc, typical of individual zoom-in state-of-the-art resimulated halos is reached within galaxies, allowing the simulation to capture the multi-phase nature of the interstellar medium and the clumpy nature of the star formation process in galaxies. I will present and discuss several key fundamental properties of galaxies and of their black holes. Due to its exquisite spatial resolution, NewHorizon captures the inefficient process of star formation in galaxies, which evolve over time from being more turbulent, gas-rich and star-bursting at high redshift. These high redshift galaxies are also more compact, and are more elliptical, disturbed and clumpier until the level of internal gas turbulence decays enough to allow for the formation of stable rotating discs. I will show the origin and persistence of the thin and thick disc components, and explain why the settling of discs ``magically’’ occurs at around a stellar mass of 1e10 Msun.

 
Tous les séminaires...