LERMA UMR8112

Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères



Home > en > Practical Information > LERMA Detailed Presentation

LERMA presentation

published on , updated on

LERMA (Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres) is a research entity operated by CNRS and 3 higher education institutions: Observatoire de Paris (OP), Sorbonne Université (SU), and Université de Cergy-Pontoise (UCP). These 3 institutions host the various research groups of LERMA.

Organisation of the laboratory and research topics
LERMA is organized in 4 Research Poles, complemented by 1 transverse structure dedicated to Technology and Research Support. Doctoral studies are principally conducted within École doctorale Astronomie et Astrophysique d’Île de France (ED 127), but about half of our PhD students belong to other doctoral schools in physics, engineering and environment (ED 129, 391, 389, Ed-PIF et 417).

"Galaxies and Cosmology" (OP)

  • Early Universe
  • Galaxy formation and dynamics
  • Clusters of galaxies
  • Dark matter
  • Active galactic nuclei, star formation and feedback in galaxies

"Dynamics of the Interstellar Medium and Stellar Plasmas" (ENS, OP, UPMC)

  • Observational characterization of the ISM cycle
  • Modeling ISM evolution from diffuse gas to stars and disks
  • Chemical diagnostics of ISM dynamics
  • Turbulent and radiative transport in (circum)stellar plasmas
  • Experimental studies of (circum)stellar plasmas

"Molecules in the Universe" (UCP, OP, UPMC)

  • Gas-surface interactions
  • Gas-phase molecular processes
  • Exotic isotopic spin ratios
  • Molecular parameters for planetary, terrestrial atmospheres and ISM

"Instrumentation Terahertz and Remote Sensing" (OP)

  • THz components and subsystems
  • THz heterodyne instruments
  • Characterization of clear, cloudy, and rainy atmospheres
  • Characterization of Earth, planets, and comets
  • Data processing, storage and diffusion

Personnel (as of January 2017)

  • 46 engineers and technicians (including 10 under contract)
  • 10 astronomers (including 2 emeriti)
  • 32 teaching researchers (including 3 emeriti and 3 under contract)
  • 21 researchers (including 7 emeriti) 7 post-doctoral fellows
  • 41 PhD students

Salient results

  • The earliest phase of star formation, captured through its bipolar ejection activity (Gerin et al. 2015 A&A 577, L2). La toute première étape de la formation d’une étoile, révélée par son éjection bipolaire (Gerin et al. 2015 A&A 577, L2).
  • New method for measuring the diffusion and desorption energy of atoms and (Minissale, M., Congiu, E., & Dulieu, F. 2016, A&A, 585 A146). Nouvelle méthode pour mesurer l’énergie de diffusion et de désorption des atomes et radicaux (Minissale, M., Congiu, E., & Dulieu, F. 2016, A&A, 585 A146).
  • First results on a 1200 GHz Schottky receiver prototype for JUICE-SWI (Maestrini, A., et al 2016). Les premiers résultats sur le prototype de récepteur Schottky à 1200 GHz pour JUICE-SWI (Maestrini, A., et al 2016).

Séminaires à venir

Vendredi 28 février 2020, 14h00
Salle de l'atelier, Paris
Filament Paradigm and Galactic Star Formation
Shu-ichiro INUTSUKA
Nagoya University
résumé :
Recent observations have emphasized the importance of the formation and evolution of magnetized filamentary molecular clouds in the process of star formation. Theoretical and observational investigations have provided convincing evidence for the formation of molecular cloud cores by the gravitational fragmentation of filamentary molecular clouds. Thus, the mass function and rotations of molecular cloud cores should be directly related to the properties of the filamentary molecular cloud, which determines the initial size and mass distribution of a protoplanetary disk around a protostar created in a core. In this talk I explain our current understanding of the star formation processes in the Galactic disk, and summarize various processes that are required in describing the filamentary molecular clouds to understand the star formation rate/efficiency, the stellar
initial mass function, and the angular momentum distribution of protoplanetary disks in their early evolutionary phase.
 
Vendredi 20 mars 2020, 14h00
Salle de l'atelier, Paris
The challenges of observing the Epoch of Reionization and Cosmic Dawn
Florent MERTENS
Kateyn institute
résumé :
Low-frequency observations of the redshifted 21cm line promise to open a new window onto the first billion years of cosmic history, allowing us to directly study the astrophysical processes occurring during the Epoch of Reionization (EoR) and the Cosmic Dawn (CD). This exciting goal is challenged by the difficulty of extracting the feeble 21-cm signal buried under astrophysical foregrounds orders of magnitude brighter and contaminated by numerous instrumental systematics. Several experiments such as LOFAR, MWA, HERA, and NenuFAR are currently underway aiming at statistically detecting the 21-cm brightness temperature fluctuations from the EoR and CD. While no detection is yet in sight, considerable progress has been made recently. In this talk, I will review the many challenges faced by these difficult experiments and I will share the latest development of the LOFAR Epoch of Reionization and NenuFAR Cosmic Dawn key science projects.
 
Vendredi 17 avril 2020, 14h00
Salle de l'atelier, Paris
Patricia TISSERA
Universidad Andres Bello, Santiago, Chili
 
Vendredi 24 avril 2020, 14h00
Salle de l'atelier, Paris
Tba
Philippe ANDRE
CEA
 
Tous les séminaires...