LERMA UMR8112

Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères



Accueil > en > Research > Interstellar medium and Plasmas

Interstellar Medium and Plasmas

publié le , mis à jour le

What processes drive the evolution of interstellar matter in the Milky Way and in other galaxies ? What roles do the turbulence, the magnetic field, the cosmic rays, and the radiation field play in this evolution ? Those fundamental questions for modern Astrophysics now appear at many spatial scales and for a great variety of environments : from the galactic scales where the diffuse gas collapse to form the precursors of new stars ; down to the scale of proto-planetary disks where the central star strongly interacts with the surrounding matter ; and even in the stars themselves where the transport mechanisms are still unknown. To study all these astronomical objects, the group « Interstellar Medium and Plasmas » of the LERMA combine theoretical works, numerical modeling, 3D simulations, and observations of interstellar environments at high spectral and angular resolutions.

JPEG - 486.4 ko

On the observational side, our group is specialized in the treatment and the analysis of the data obtained with the most advanced space and ground-based observatories. Our expertise is particularly strong in the infrared and sub-millimeter domains which reveal the emission of atoms, molecules and interstellar dust. We have therefore been deeply involved in the recent successes and findings of Herschel and Planck space observatories, which we now follow up by collecting data with the new generation of instruments (in particular, APEX, ALMA, and soon NOEMA).

JPEG - 2.5 Mo

On the numerical side, the codes developed in our group are internationally renowned as state-of-the-art tools for the analysis of interstellar matter and the interpretation of observational data. Our expertise extends from the conception of 3D numerical simulations of magnetohydrodynamics, which we run using high-level computational capacities (e.g. PRACE, MesoPSL), to the development of advanced numerical models. The strength of those models, which we provide to the community through the ISM and jets platform, is to solve a great number of microphysical processes at play in the interstellar medium, with prescriptions based on the results of laboratory experiments and theoretical studies which are partly performed in our laboratory.


Select one of the following links to know more about our activities


1. Turbulence & magnetic field

2. Matter / photon interactions

3. Stellar plasmas and laboratory astrophysics

4. Prestellar cores

5. Protostars, debris & jets

6. Accretion & ejection in stars


Click here to access our publications

Séminaires à venir

Vendredi 28 septembre 2018, 14h00
Salle de l'atelier, Paris
The [CII] emission line as a molecular gas mass tracer in galaxies at low and high redshift
Anita ZANELLA
ESO
résumé :
So far the gas conditions in main-sequence galaxies at the peak of the cosmic star formation history have been mainly investigated through the CO emission lines. However, observing the CO transitions at higher redshift becomes challenging, since the lines luminosity weakens as metallicity decreases. A powerful alternative could be the [CII] emission at 158um instead: it is one of the brightest lines in the far IR regime observed in star-forming galaxies and it is the main coolant of the interstellar medium. Local studies show that the [CII] luminosity correlates with the galaxy star formation rate (SFR), although main-sequence sources and starbursts seem to have different behaviours. At higher redshift the picture is even less clear and only samples of starbursts have been analyzed so far. To remedy this situation we have observed with ALMA a sample of 10 main-sequence sources at z ~ 2 and we complemented our sample with literature data at lower and higher redshift. We found that the [CII] luminosity correlates with galaxies' molecular gas mass, independently of their depletion time, metallicity, and redshift. This lays foundations for future explorations of the interstellar medium of starbursts and galaxies at much higher redshift (z > 4).

 
Vendredi 5 octobre 2018, 14h00
Salle de l'atelier, Paris
Astrochemistry in star forming regions : new modeling approaches
Emeric BRON
IRAM/LERMA
résumé :
Star-forming regions present rich infrared and millimeter spectra emitted by the gas exposed to the feedback of young stars. This emission is increasingly used to study the star formation cycle in other galaxies, but results from a complex interplay of physical and chemical processes : chemistry in the gas and on grain surfaces, (de)excitation processes of the atoms and molecules, heating and cooling balance,... Its understanding thus requires detailed astrochemical models that include the couplings between these processes. In this talk, I will present several examples where new modeling approaches of specific processes and their couplings proved crucial to solve persistent observational riddles : from the driving role of UV irradiation in the dynamics of photodissociation regions (PDR) to the efficient reformation of molecular hydrogen in these regions.
 
Tous les séminaires...