LERMA UMR8112

Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères



Accueil > en > Research > Interstellar medium and Plasmas > Matter / photon interactions

Matter / photon interactions

publié le , mis à jour le

Atoms, molecules, and grains probe the chemical evolution of the Universe, from the most distant metal-poor galaxies, to the densest phases of the interstellar medium (e.g. star forming regions) rich in complex molecules. On the observational side, such studies undergo a rapid expansion with the recent development of the Herschel, APEX, SOFIA, ALMA, and (soon) NOEMA submillimeter telescopes. Many molecular lines, long thought as tracers of dense and cold gas, have thus been detected in hostile environments, weakly shielded from the UV radiation field, including active galaxies at high redshift.

JPEG - 1300 ko

All these discoveries raise several questions. What are the contributions of the different phases of the interstellar medium (HII regions / Warm Ionized Medium, Warm Neutral Medium, Cold Neutral Medium) in the emissions of atomic and molecular lines and what can we deduce about their structure and evolution ? Are the current models able to explain the chemical richness of astronomical environments and the various spatial and spectral correlations observed in galactic and extragalactic media ? What are the main chemical and physical processes involved ? Finally, what information can we derive from the observations, in particular regarding the energy balance of galaxies, the timescale of the cycle of matter and its evolution with metallicity ?

In order to solve those issues, our team is specialized in the conception and development of numerical models designed to treat all the coupling between the interstellar matter, the radiation field at all wavelengths, and the high energy particles. Most of the numerical developments we propose are done in the framework of the Meudon PDR code, a public model (http://ism.obspm.fr) which describes the chemical and thermal structures of an interstellar cloud pervaded by an external radiation field. The specificity of our approach is to describe as precisely as possible the details of the microphysical processes at play and to estimate their global impact on the physics of the environment. Our work is therefore build on the results of numerous theoretical calculations and laboratory experiments (e.g. spectroscopy, collisions) and is thus strongly interdisciplinary, at the interface of chemistry, dynamics, radiative transfer, and atomic and molecular physics.


Find below a few of our most recent results.


Temperature fluctuations of interstellar grains

Interstellar grains are not always at thermal equilibrium but may fluctuate over a wide range of temperature. To study the process we have recently developed a new method to solve the statistical equilibrium of the system. Using the method on real astronomical sources, we have shown that this aspect of the microphysics of grains has a decisive impact on all the surface processes, in particular the chemical reaction, the ortho-para conversion and the desorption mechanisms. The fact that small grains naturally span a whole distribution of temperatures strongly modifies the intensities of several H2 lines predicted in galactic PDRs compared to traditional models.


Excitation of CO in PDRs

One of the most vivid results of the Herschel, APEX, and ALMA observatories is the detection of the pure rotational ladder of carbon monoxyde up to high energy transitions (J = 49-48) in a variety of astrophysical environments, including the galactic and extragalactic interstellar matter. In contrast to traditional models which usually explain those observations by combining the contributions of several media (PDR, shock, XDR), we have shown that a detailed treatment of the microphysical processes of dust and gas offers an alternative scenario. With such treatment, a single PDR component has been found to be sufficient to reproduce the intensities of all the rotational lines of CO observed in the NGC 7023 nebula and in the Orion bar.

JPEG - 297.3 ko


Surface chemistry

Many interstellar molecules are known to be formed on dust surfaces. To model the process as precisely as possible, we have revised our treatment of surface chemistry in the PDR code. Both physisorption and chemisorption sites have been added in the computation of H2 production. We have also developed a new formalism to describe the formation of grain mantles and the adsorption and desorption of atomic and molecular species, which has been tested on the formation of methanol and formaldehyde. We have shown that these improvements are necessary to explain the formation of H2 at the border of PDRs and to interpret the abundances of several molecules observed in the Horsehead nebula with the Plateau de Bure interferometrer.

JPEG - 280.0 ko


Nitrogen chemistry in the interstellar medium

A major part of our work consists in keeping track of the latest improvements of the kinetic chemical database, in coordination with several colleagues physicists and chemists, in order to update our chemical reaction networks. Focusing on nitrogen chemistry, we have recently built a new chemical network containing D, 13C, and 15N that we used to study fractionation processes in the interstellar medium. This network has been tested with several dense clouds and prestellar core conditions. Most notably, we found that the nitrile and isocyanide are systematically depleted in 13C in these media, a result that casts doubts on previous interpretation of observations


Diagnostics of the multiphase interstellar medium

Interpreting extragalactic observations is tricky. Indeed, with the resolution of the current instruments, the lines of sight necessarily encompass the contributions of a multitude of different environments, where the chemistry is driven by the radiation field (HII region, PDRs, XDRs), the cosmic rays (CRDRs), or the dissipation of mechanical energy (shock, TDRs). To treat as many of these scenario as possible, we have recently extended the scope of the Meudon PDR code by implementing all the interaction between X-ray photons and the interstellar matter. This code gave us access to the atomic and molecular transitions sensitive to the X-ray field, and has been successfully used to interpret observations of the Large Magellanic Cloud.

JPEG - 198.5 ko


Publications récentes ou significatives

Bron, E. ; Le Bourlot, J. ; Le Petit, F., 201 4,A&A, 569, 100
Godard, B. ; Cernicharo, J., 2013, A&A, 550, 8
Le Bourlot, J. ; Le Petit, F. ; Pinto, C. ; Roueff, E. ; Roy, F., 2012, A&A, 541, 76
Le Petit, F. ; Nehmé, C. ; Le Bourlot, J. ; Roueff, E., 2006, ApJS, 164, 506
Le Petit, F. ; Ruaud, M ; Bron, E. ; Godard B., et al., 2015, A&A, in press.
Levrier, F. ; Le Petit, F. ; Hennebelle, P. ; Lesaffre, P. ; et al., 2012 A&A, 544, 22
Neufeld, D. A. ; Roueff, E. ; Snell, R. L. ; Lis, D. ; et al., 201 2,ApJ, 748, 37
Roueff, E. ; Loison, J. C. ; Hickson, K. M., 2015, A&A, 576, 99
Sternberg, A. ; Le Petit, F. ; Roueff, E. ; Le Bourlot, J., 2014, ApJ, 790, 10
Zanchet, A. ; Godard, B. ; Bulut, N. ; Roncero, O. ; et al., 2013, ApJ, 766, 80


Membres de l’équipe

Bron Emeric

Godard Benjamin

Languignon David

Le Bourlot Jacques

Le Petit Franck

Rabasse Jean-François

Roueff Evelyne

Stephan Gwendoline

Séminaires à venir

Vendredi 27 novembre 2020, 14h00
via Zoom,
La phosphine sur Vénus : Une histoire brève qui en dit long
Thérèse ENCRENAZ
LESIA, Observatoire de Paris
résumé :
Le 14 septembre 2020, une nouvelle fait sensation dans le monde des astronomes… et au-delà. A partir de données obtenues avec le JCMT et ALMA, une équipe internationale pilotée par Jane Greaves (Université de Cardiff, UK) annonce la détection de la phosphine (PH3) dans l’atmosphère de Vénus et évoque la possibilité d’une forme de vie sur la planète. Plusieurs articles sont publiés ou soumis dans la foulée, étudiant les qualités éventuelles de la phosphine en tant que biomarqueur ou évoquant un développement possible de la vie dans les nuages de Vénus, et la presse internationale en fait grand cas. De notre côté, au LESIA, nous menons depuis huit ans une campagne d’observations de Vénus en infrarouge, avec le télescope IRTF de Maunakea, pour étudier les variations de deux molécules mineures importantes pour la climatologie de Vénus, SO2 et H2O. En mars 2020, nous avons été contactés par l’équipe de J. Greaves pour rechercher la phosphine dans l’infrarouge avec l’instrument que nous utilisons. Les observations n’auront pas lieu à cause de la crise sanitaire. Cependant, nous avons recherché la signature de PH3 dans d’anciennes données infrarouges prises avec le même instrument, et nous en avons déduit pour l’abondance de PH3 une limite supérieure très contraignante, quatre fois plus faible que la valeur annoncée par Jane Greaves et ses collègues. Par ailleurs, le traitement des données ALMA par son équipe fait l’objet de nombreuses réserves ou critiques de la part des radioastronomes. Il est donc vraisemblable que l’engouement des média pour la phosphine de Vénus va retomber prochainement…
 
Vendredi 4 décembre 2020, 14h00
via Zoom,
Simulating galaxies at high resolution in their cosmological context with NewHorizon: methods and some key results on galaxy properties and their morphology
Yohan DUBOIS
Institut d'Astrophysique de Paris
résumé :
Hydrodynamical cosmological simulations are increasing their level of realism by considering more physical processes, having more resolution or larger statistics. However, one usually has to either sacrifice the statistical power of such simulations or the resolution reach within galaxies. I will introduce the NewHorizon project where a zoom-in region of ~(16 Mpc)^3, larger than a standard zoom-in region around a single halo, embedded in a larger box is simulated at high resolution. A resolution of up to 34 pc, typical of individual zoom-in state-of-the-art resimulated halos is reached within galaxies, allowing the simulation to capture the multi-phase nature of the interstellar medium and the clumpy nature of the star formation process in galaxies. I will present and discuss several key fundamental properties of galaxies and of their black holes. Due to its exquisite spatial resolution, NewHorizon captures the inefficient process of star formation in galaxies, which evolve over time from being more turbulent, gas-rich and star-bursting at high redshift. These high redshift galaxies are also more compact, and are more elliptical, disturbed and clumpier until the level of internal gas turbulence decays enough to allow for the formation of stable rotating discs. I will show the origin and persistence of the thin and thick disc components, and explain why the settling of discs ``magically’’ occurs at around a stellar mass of 1e10 Msun.

 
Vendredi 11 décembre 2020, 14h00
via Zoom,
Investigating the physical processes driving the evolution of baryons in local and high-redshift low-metallicity galaxies
Ambra NANNI
Laboratoire d'Astrophysique de Marseille
résumé :
The chemical enrichment in the interstellar medium of galaxies is regulated by several physical processes: stellar birth and death, dust growth and destruction, galactic inflows and outflows. Understanding the interplay of such processes is essential in order to study galaxy evolution, the chemical enrichment of the Universe through the cosmic epochs and to interpret the available and future observations. Despite the importance of such topics, the contribution of different stellar sources to the chemical enrichment of galaxies, e.g. massive stars exploding as Type II supernovae and low-mass stars, as well as the mechanisms driving the evolution of gas, metal and dust grains, remains controversial. In this seminar, I will revise our current knowledge on these physical processes and the observational challenges. I will then present the results of a recent investigation focused on local low-metallicity galaxies for which the evolution of metals, gas and dust content has been studied. In particular, I will show how the comparison between model predictions and observations can allow us to identify the most relevant physical processes determining the chemical evolution of these systems. I will then discuss how the information derived for local low-metallicity galaxies can be employed to study Lyman-Break Galaxies at the epoch of reionization, which are often considered to be their high-redshift counterparts.


 
Tous les séminaires...