LERMA UMR8112

Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères



Accueil > fr > Recherche > Milieu Interstellaire et Plasmas > Accrétion & éjection dans les étoiles

Accrétion & éjection dans les étoiles

publié le

Cette composante du Pôle « Milieu Interstellaire et Plasmas » combine des approches numériques et expérimentales de pointe afin d’étudier les processus se produisant dans les intérieurs d’étoiles et les environnements stellaires, et notamment le rôle du rayonnement et du champ magnétique dans la dynamique, la structure et la stabilité des plasmas concernés. Dix chercheurs permanents et émérites y contribuent. Ces activités sont actuellement soutenues par le Labex Plas@Par, dont la coordination scientifique est assurée par le LERMA.

Nos travaux incluent ainsi plusieurs thèmes de recherche profondément reliés les uns aux autres : (1) la modélisation des processus d’accrétion et d’éjection qui caractérisent les premières phases de l’évolution stellaire ; (2) l’étude des instabilités magnétiques / convectives appliquées aux intérieurs stellaires et aux disques protoplanétaires ; et (3) le calcul de données fondamentales de physique atomique, et l’étude de leur influence sur la structure et l’évolution stellaire, en particulier les opacités de haute précision (projet international OPACITY). Ces données de physique atomique obtenues par calculs ou mesures expérimentales alimentent les bases de données.

Disques d’accrétion

Notre objectif ici est de comprendre i) le rôle joué par le champ magnétique et le rayonnement sur la formation de disques d’accretion autour des protoétoiles, le lancement des jets de plasmas issus de ces objets, et leur propagation dans le milieu interstellaire, ii) la topologie, la stabilité, et les signatures radiatives des chocs d’accrétion où la matière issue du disque protoplanétaire puis canalisée par le champ magnétique stellaire chute sur la chromosphère. Notre approche s’appuie sur des simulations numériques magnétohydrodynamique menées sur supercalculateurs (e.g. PRACE), et également sur des expériences dédiées réalisées sur des installations laser (e.g. LULI, PALS) et de puissance électrique pulsée (« Z-pinch ») de classe internationale. Des observations à très haute résolution angulaire sont également obtenues au VLT et avec les grands interféromètres submillimétrique (IRAM-PdBI, ALMA) afin de contraindre les modèles magnétohydrodynamique.

Séminaires à venir

Vendredi 5 avril 2019, 14h00
Salle de l'atelier, Paris
The magnetized interstellar medium in the Galaxy through Faraday tomography of the radio sky
Andrea BRACCO
ENS
résumé :
The study of the diffuse Galactic interstellar medium (ISM) is both a
waypoint to investigate the processes that turn gas into stars and to
account for foreground contaminations in modern high-precision
cosmological probes of the Universe.

New structures in the diffuse ionized and magnetized ISM have been
recently observed through Faraday tomography of polarization data at low
radio frequencies. Although the physical origin of these structures
remains uncertain, interesting correlations with tracers of neutral ISM,
such as atomic hydrogen lines and interstellar dust polarization, have
been found. This opens an observational window on the first stages of
phase transition between diffuse/warm and denser/colder gas under the
presence of magnetic fields, allowing us to constrain their role in
structure formation in the ISM.

In my talk I will present an overview of the recent findings in the
diffuse Galactic ISM with the LOFAR radio polarization data. I will
highlight the relevance of a thorough statistical description of these
data both for Galactic studies and for modeling their impact as a
foreground to the detection of the atomic hydrogen 21cm hyperfine
transition from the Epoch of Reionization, a key step with the upcoming
Square Kilometre Array (SKA).
 
Vendredi 12 avril 2019, 14h00
Salle de l'atelier, Paris
Radiation magnetohydrodynamic models and spectral signatures of plasma flows accreting onto young stellar object
Salvatore COLOMBO
LERMA
résumé :
According to the largely accepted magnetospheric accretion scenario, classical T Tauri Stars (CTTSs) are young stars that accrete material from their circumstellar disk. The objective of my PhD project is to shed light on the processes governing the physics of the accreting plasma flows, through complete radiation magnetohydrodynamic models. In this talk, I will present the results obtained during my 18 month period in Paris.

First, I will focus on the results obtained from a 3D magnetohydrodynamical (MHD) model of a star-disk system. We simulate the effects of series of flares occurring on the surface of the disk. We observe that each flare produces a hot loops that links the star to the disk; all the loops build up a hot extended corona that irradiates the disk from above. Moreover, the flares trigger overpressure waves that travel through the disk and modify its configuration. Accretion funnels may be triggered by the flaring activity and thus contribute to the mass accretion rate of the star. The accretion columns can be perturbed by the flares. As a result, the streams are highly inhomogeneous, with a complex density structure, and clumped.

Second, I will provide the first assessment of the role of radiation effects on the dynamics and the structure of the impact region of the accreting column onto the stellar surface. In particular, we proved the existence of a radiative precursor in the pre-shock part of the accreting column. To achieve such a result, we have, for the first time, developed a Non Local Thermodynamic Equilibrium (non-LTE) radiation hydrodynamics model, which we implemented in the 3D MHD PLUTO code.”

 
Vendredi 21 juin 2019, 14h00
Salle de l'atelier, Paris
Accretion-driven turbulence and observational signatures
Pierre GUILLARD
IAP
 
Tous les séminaires...