LERMA UMR8112

Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères



Accueil > fr > Recherche > Milieu Interstellaire et Plasmas > Accrétion & éjection dans les étoiles

Accrétion & éjection dans les étoiles

publié le

Cette composante du Pôle « Milieu Interstellaire et Plasmas » combine des approches numériques et expérimentales de pointe afin d’étudier les processus se produisant dans les intérieurs d’étoiles et les environnements stellaires, et notamment le rôle du rayonnement et du champ magnétique dans la dynamique, la structure et la stabilité des plasmas concernés. Dix chercheurs permanents et émérites y contribuent. Ces activités sont actuellement soutenues par le Labex Plas@Par, dont la coordination scientifique est assurée par le LERMA.

Nos travaux incluent ainsi plusieurs thèmes de recherche profondément reliés les uns aux autres : (1) la modélisation des processus d’accrétion et d’éjection qui caractérisent les premières phases de l’évolution stellaire ; (2) l’étude des instabilités magnétiques / convectives appliquées aux intérieurs stellaires et aux disques protoplanétaires ; et (3) le calcul de données fondamentales de physique atomique, et l’étude de leur influence sur la structure et l’évolution stellaire, en particulier les opacités de haute précision (projet international OPACITY). Ces données de physique atomique obtenues par calculs ou mesures expérimentales alimentent les bases de données.

Disques d’accrétion

Notre objectif ici est de comprendre i) le rôle joué par le champ magnétique et le rayonnement sur la formation de disques d’accretion autour des protoétoiles, le lancement des jets de plasmas issus de ces objets, et leur propagation dans le milieu interstellaire, ii) la topologie, la stabilité, et les signatures radiatives des chocs d’accrétion où la matière issue du disque protoplanétaire puis canalisée par le champ magnétique stellaire chute sur la chromosphère. Notre approche s’appuie sur des simulations numériques magnétohydrodynamique menées sur supercalculateurs (e.g. PRACE), et également sur des expériences dédiées réalisées sur des installations laser (e.g. LULI, PALS) et de puissance électrique pulsée (« Z-pinch ») de classe internationale. Des observations à très haute résolution angulaire sont également obtenues au VLT et avec les grands interféromètres submillimétrique (IRAM-PdBI, ALMA) afin de contraindre les modèles magnétohydrodynamique.

Séminaires à venir

Vendredi 23 avril 2021, 14h00
Visioconférence, VIDEO
A stellar graveyard in the core of a globular cluster
Gary MAMON
IAP
résumé :
The ubiquity of supermassive black holes in massive galaxies suggests the existence of intermediate-mass ones (IMBHs) in smaller systems. However, IMBHs are at best rare in dwarf galaxies and not convincingly seen in globular clusters. We embarked on a search for such an IMBH in a very nearby core-collapsed globular cluster, NGC 7397. For this we ran extensive mass-orbit modeling with our Bayesian MAMPOSSt-PM code that fits mass and velocity anisotropy models to the distribution of observed tracers in 4D projected phase space. We used a combination of proper motions from HST and Gaia, supplemented with redshifts from MUSE. We found very strong Bayesian evidence for an excess of unseen mass in the core of the cluster amounting to 1 to 2% of the cluster mass. But surprisingly, we found rather strong evidence that this excess mass is not point-like but has a size of roughly 3% of that of the cluster. Our conclusion is robust to our adopted surface density profile and on our modeling of the velocity anisotropy, as the data suggest isotropic orbits throughout the cluster. It is also robust to our use of one or two classes of Main Sequence stars (given the mass segregation in collisional systems such as clusters), as well as on our filtering for quality data. The expected mass segregation suggests that the excess mass is made of objects heavier than Main Sequence stars: white dwarfs, neutron stars and possibly stellar black holes, all of which lost their orbital energy by dynamical friction to end up in the cluster core. I will discuss the evidence for and against the possibility that most of the unseen mass in the center is in the form of such black holes, as well as the consequences of this intriguing possibility.
 
Tous les séminaires...