Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères

Accueil > en > Research > Molecules in the Universe > Molecular Spectroscopy Experiments > Molecular Spectroscopy and Laser Instrumentation for Environment

Molecular Spectroscopy and Laser Instrumentation for Environment

par Jean-Hugues Fillion, Mathieu Bertin - publié le , mis à jour le


Christof Janssen (Researcher - Team leader), Corinne Boursier (Ass. Prof.), Hadj Elandaloussi (Engineer), Pascal Jeseck (Engineer), Yao-Veng Té (Ass. Prof.), Thomas Zanon (Ass. Prof.), Dmitri Koshelev (PhD student).


Molecules are integral building blocks of our universe and their observation in various environments allows to improve our understanding of the microscopic processes that are linked to our origin and to the conditions of life. The interaction between matter and light is one of the preferred physical phenomena to probe these molecules in their diverse forms, states and environments. To that end, suitable technologies, reliable measurements and new experiments need to be carried out and developed.

Alignement d’une cellule d’absorption à faisceaux croisés pour des mesures de précision dans l’ozone.
C. Janssen

Research Interests & Collaborations

The main interest of the SMILE team is in the understanding of *molecular and dynamical processes* that play a role in *planetary and protoplanetary atmospheres*. Using laboratory experiments or atmospheric measurements, we particularly focus on the study of *isotope ratios* and *abundances* of small molecules (such as O3, CH4, CO, CO2, aromatic compounds, etc), which tell a history of their fate and origin.

Special research topics are : oxygen isotope anomalies in O + XO reactions, ozone formation pathways in planetary atmospheres and in the laboratory, UV and high-resolution IR spectroscopy of molecules of atmospheric and astrophysical interest, multi-spectral molecular properties, precision measurements of molecular parameters, observation and climatology of terrestrial grenhouse gases by ground based remote sensing (TCCON), and monitoring of atmospheric pollutants by spectroscopic methods.

This work is largely embedded within national (GSMA, Reims ; LiPhy, Grenoble ; LPL, Villetanneuse ; LSCE, Gif-sur-Yvette) and international collaborations (U. Utrecht, Netherlands ; U Copenhagen, Denmark ; U Wuppertal, Germany ; KIT Karlsruhe, Germany ; U Bremen, Germany).

Based on unique and self developed tools for quantitative in-situ and remote sensing of molecules in the gas phase, we study these molecules that are of interest on a variety of scales in space and time and range from the origin of the solar system to processes in planetary atmospheres that influence the future climate on planet Earth.

Our main instruments and experimental methods comprise the Paris-FTS (link), the laser based MIS-TDLAS and PRESPASS instruments, as well as dedicated mass spectrometers, such as a MBMS system.

The SMILE group has recently teamed up with the TA group of the pole "Instrumentation, Mesure et Environnement" to build a transverse working group TASQ (french acronym for Atmospheric Remote Sensing and Quantitative Spectroscopy) within the regional research federation IPSL

Séminaires à venir

Vendredi 17 janvier 2020, 14h00
Salle de l'atelier, Paris
The role of feedback- and accretion-driven turbulence in galaxy build-up
résumé :
Cosmological models describe accurately the growth of large scale, dark matter-dominated, structures, but largely fail to reproduce the baryon content and physical properties of galaxies. Why? Essentially because the build-up of galaxies is regulated by a complex interplay between gravitational collapse, galaxy merging and feedback related to AGN and star formation, for which we still miss a robust theory. The energy released by these processes has to dissipate for gas to cool, condense, and form stars. How gas cools is thus a key to understand galaxy formation and why it such an inefficient process. In this seminar, I will discuss a few examples where turbulence driven by gas accretion, feedback, and galaxy interactions, which is largely ignored in models of galaxy formation, and captured in current simulations only over a limited range of scales, may have a major impact on galaxy and halos properties.

Vendredi 24 janvier 2020, 14h00
Salle de l'atelier, Paris
The accretion-ejection connection in planet-forming disks. New perspectives from high angular resolution observations
Vendredi 7 février 2020, 14h00
Salle de l'atelier, Paris
Redistribution of angular momentum from core to disk scales in Class 0 stars
Mathilde GAUDEL
Tous les séminaires...