LERMA UMR8112

Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères



Accueil > fr > Recherche > Molécules dans l’Univers > Expériences pour l’étude des interactions Gaz-Surfaces > Spin, Photons et Glaces

Spin, Photons et glaces

par Jean-Hugues Fillion - publié le , mis à jour le

Composition de l’équipe

Xavier Michaut (MCF – Responsable d’équipe), Jean-Hugues Fillion (Prof.), Mathieu Bertin (MCF), Géraldine Féraud (MCF), Laurent Philippe (MCF), Pascal Jeseck (Ingénieur de recherche), Thomas Putaud (Doctorant), Rémi Dupuy (Doctorant)

Contexte

L’univers froid possède une grande richesse moléculaire, des plus simples espèces comme H2, H2O ou CO jusqu’à des espèces organiques de complexité croissante (alcools, aldéhydes, acides carboxyliques…), dont l’avènement des nouveaux radiotélescopes, spatiaux ou terrestres, permet la détection de plus en plus précise dans les régions de formation d’étoile et de planètes. La sensibilité croissante de ces instruments permet également la mesure des états quantiques rotationnels de ces molécules, et en particulier leur état de spin nucléaire (isomérie de spin nucléaire), un paramètre pouvant retracer l’histoire thermique des molécules observées.
Dans ces zones, la température ambiante ( 10-100 K) fait que la majorité des molécules complexes se forment ou condensent à la surface de grains de poussière, formant un manteau glacé qui en constitue le réservoir principal. Ce sont ces glaces qui, lors de leur sublimation, enrichissent la phase gaz et contrôlent ainsi sa constitution chimique, tout en influant sur les propriétés intrinsèques des molécules qui sont détectées. Les phénomènes de désorption et d’échange entre les phases solide et gaz sont donc une étape clef dans la compréhension des observations des molécules dans les zones froides du milieu interstellaire.

L’équipe

L’équipe « Spins, Photons and Ices » est une équipe de physique expérimentale, qui s’intéresse aux phénomènes d’adsorption et de désorption des molécules d’intérêt astrophysique, et à l’influence de ces processus sur l’état quantique des molécules, en particulier leur état de spin nucléaire. Les expériences réalisées par le groupe visent à simuler en laboratoire ces processus et à comprendre ces phénomènes de façon quantitative, et à l’échelle microscopique. Pour cela, l’équipe fait appel à des méthodes de spectroscopie (de masse, infrarouge à moyenne et très haute résolution, et spectroscopie laser), et aux techniques de vide et ultravide et de cryogénie afin de se placer dans les conditions extrêmes du milieu interstellaire.
L’équipe dispose de deux dispositifs instrumentaux complémentaires pour mener ses études. Le dispositif SPICES est un montage sous ultravide (pression 10-10 Torr), dans lequel sont étudiés les glaces et les phénomènes d’adsorption et de désorption, thermique ou photo-induite. SPICES est conçue pour s’adapter à plusieurs types de sources de rayonnement pour la spectroscopie ou pour simuler le rayonnement interstellaire : des sources laser allant de l’infrarouge à l’UV du vide, disponibles au laboratoire, ou encore le rayonnement synchrotron (ligne DESIRS du synchrotron SOLEIL) où une partie des expériences est menée. Le dispositif CoSpiNu est quant à lui adapté pour l’étude des petites molécules d’intérêt astrophysique, en phase gaz, à l’interface solide-gaz ou en matrice de gaz rare à très basse température. Le dispositif est relié à un spectromètre infrarouge, sous vide et à très haute résolution, qui permet la détection de très petites quantités de gaz, et la détermination leur état de spin nucléaire.

Thématiques développées

  • L’adsorption et la désorption thermique d’atomes et de molécules à partir de surfaces d’intérêt astrophysique – Dispositif SPICES, thèse Mikhaïl Doronin, collaboration Y. Ellinger, A. Markovitz, F. Pauzat (LCT - Paris).
  • UV Photo-induced desorption : quantification and molecular mechanisms – SPICES setup, collaborations with H. Linnartz (Leiden Observatory - NL), K. Öberg (Harvard Smithsonian - USA), V. Baglin (CERN - CHE). Experiments realized partly at the SOLEIL synchrotron (France).
  • Conversion de spin nucléaire en matrice de gaz rare et à l’équilibre solide-gaz –Dispositif CoSpiNu, collaborations C. Pardaneau, S. Coussan, C. Martin (PIIM – Marseille), P. Cacciani, M. Khelkhal et J. Cosleou (PhLAM – Lilles), P. Ayotte, P-A Turgeon, J. Vermette (Université de Sherbrook, Canada).
  • Influence de la désorption sur les états quantiques et spin nucléaire des molécules – dispositifs SPICES et CoSpiNu.


Contrats et sources de financement
 : ANR Gasospin (ANR-09-BLAN-0066-01), Programme National du CNRS « Physique et Chimie du Milieu Interstellaire » (PCMI), Plateforme de l’Université Pierre et Marie Curie « Astrolab », Labex de l’Université Pierre et Marie Curie « MiChem », soutient de la région Ile-de-France DIM-ACAV (astrophysique et conditions d’apparition de la vie).

Séminaires à venir

Vendredi 15 novembre 2019, 14h00
Salle de l'atelier, Paris
Excitation mechanisms in the intracluster filaments around the Brightest Cluster Galaxies
Fiorella POLLES
LERMA
résumé :
In the center of galaxy clusters lie giant elliptical galaxies, the Brightest Cluster galaxies (BCGs). These galaxies are often surrounded by a system of filaments (e.g. Salomé & Combes 2003) that emit in a wide range of wavelengths, illustrating the multi-phase nature of these streams. Many of these filaments do not have strong on-going star formation and the photoionization by stellar emission cannot reproduce their emission (Johnstone et al. 2007): what is preventing these structures to create stars and what heating mech- anisms are involved, are still open questions. I have investigated cosmic rays and X-rays as likely heating sources, combining multi-wavelength line emission (?23 lines: from optical to far-infrared) with Cloudy models (Polles et al in prep.). I have fully constrained the model of the ionized phase combining for the first time optical-to-infrared emission and self-consistent multi-phase models, pushing the analysis to the molecular phase on three off-nuclear regions of NGC 1275, the central giant elliptical galaxy of the Perseus Cluster. We showed that using X-ray emission as the main heating sources, all of the ionized line emission can be reproduced. We found that to reproduce [OI]63?m line, a small filling factor of the photodissociation phase is necessary. We also showed that adding an additional dense phase or an extra pressure component is required to robustly re- produce the H2 line emission.
 
Vendredi 29 novembre 2019, 14h00
Salle de l'atelier, Paris
The size of galaxies in the era of ultra-deep imaging
Nushkia CHAMBA
Instituto de Astrofisica de Canarias
résumé :
While the effective radius is a robust parameter, its use to
characterise galaxy sizes has provided a counter-intuitive definition of
what the actual extent of a galaxy is. Current deep imaging therefore
offers a unique opportunity to critically review the convention that the
size of a galaxy is its effective radius and rethink how one best
measures the extent of galaxies using a physically motivated parameter.
We introduce a new definition of galaxy size based on the gas density
threshold for star formation in galaxies. Remarkably, our new size
definition not only captures what the human visual system identifies as
the edge of a galaxy, but also dramatically decreases the scatter in the
stellar mass - size plane by a factor of three. Our size parameter
unifies galaxies spanning five orders of magnitude in stellar mass on a
single mass-size relationship. To demonstrate the implications of our
results, we show that ultra-diffuse galaxies have the same sizes as
regular dwarfs when a size indicator that describes the global structure
of galaxies is used. This work may be extended for larger samples of
galaxies using upcoming wide, deep imaging surveys.
 
Vendredi 6 décembre 2019, 14h00
Salle de l'atelier, Paris
Is accretion-driven turbulence a key process for galaxy growth ?
Pierre GUILLARD
IAP
 
Vendredi 13 décembre 2019, 14h00
Salle de l'atelier, Paris
Falsifying the concordance of cosmology with the large-scale structures
Benjamin L'HUILLIER
Yonsei University, Seoul
 
Vendredi 24 janvier 2020, 14h00
Salle de l'atelier, Paris
The accretion-ejection connection in planet-forming disks. New perspectives from high angular resolution observations
Benoît TABONE
Leiden
 
Tous les séminaires...