LERMA UMR8112

Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères



Accueil > fr > Recherche > Molécules dans l’Univers > Expériences pour l’étude des interactions Gaz-Surfaces > Réactivité sur les surfaces froides

Réactivité sur les surfaces froides

par François Dulieu, Jean-Hugues Fillion, Mathieu Bertin, Stephan Diana - publié le , mis à jour le

Membres

Francois Dulieu (Prof – Responsable scientifique), Saoud Baouche (Ingénieur), Henda Chaabouni (MCF), Vincent Cobut (MCF), Emanule Congiu (MCF), Stéphane Diana (Ingénieur) , Francois Lachèvre (Technicien), Henri Lemaître (Doctorant), Audrey Moudens (MCF), Thanh Nguyen (Doctorante).

Contexte : Comment se forment les molécules sur les surfaces froides ?

Les molécules de notre quotidien telles que l’eau ou le gaz carbonique, ont existé bien avant la naissance de la Terre. Les observations radio-astronomiques sont capable de retracer cette préhistoire chimique, surtout si les molécules sont dans la phase gazeuse. Mais c’est en phase solide que les molécules complexes sont vraisemblablement synthétisées, et sont alors très difficilement observables. C’est pourquoi, l’astrophysique de laboratoire doit explorer la synthèse des molécules sur les surfaces froides, et ainsi apporter les réponses nécessaires concernant cet aspect fondamental caché aux nouvelles observations. A cette fin nous construisons des dispositifs expérimentaux spécifiques dédiées à cette thématique.

L’équipe Réactivité sur des surfaces froides est une équipe de physique expérimentale hébergée par l’Université de Cergy Pontoise, qui s’intéresse à l’évolution des atomes et des molécules sur des surfaces d’intérêt astrophysique. Elle étudie en particuliers la réactivité des atomes et molécules mais aussi tous les processus qui lui sont associés, tels que le collage, la diffusion et la désorption.
L’équipe utilise des jet atomiques et moléculaires qu’elle fait interagir avec des surfaces (graphite, silicates, glace…) qui peuvent être refroidies à très basse température (> 6 K) afin de se placer dans les conditions extrêmes du milieu interstellaire.

Dispositifs expérimentaux

L’équipe dispose de deux dispositifs instrumentaux complémentaires pour mener ses études.

  • FORMOLISM – Développée depuis 2001.


UHV
2 jets atomiques et moléculaires (H, N, O, CO, NO, H2CO...), en projet source de nanograins (Coronène).
Surfaces : un échantillon amovible (graphite, or ou silicate) et un dispositif direct de croissance contrôlée de glace (amorphe, poreuse, cristalline…).
Gamme de température de surface 6-300K, en projet 10-800K.
Détection par spectrométrie de Masse (4 modes) : Composition des jets, détection directe pendant exposition, désorption programmée en température, énergie interne des atomes ou molécules.
Spectroscopie Infrarouge d’Absorption en incidence rasante.
Détection laser (REMPI 2+1) couplée à un temps de vol.

  • VENUS – Développée depuis 2011

Jusqu’à 5 jet atomiques (2 actuellement)
Surfaces : Porte échantillon rotatif avec 3 surfaces.
Gamme de température (10-300K)
Détection par spectrométrie de Masse (4 modes) : Composition des jets, détection directe pendant exposition, désorption programmée en température, énergie interne des atomes ou molécules.
Spectroscopie Infrarouge d’Absorption par Réflexion en incidence rasante.

Etudes récentes

  • Synthèses des molécules : H2O (Chaabouni et al 2012), NH2OH (Congiu et al 2012), Oxydes d’azotes (Minissale et al 2013, 2014), CO2 (Noble et al 2011, Minissale et al 2012,2014)…
  • Diffusion et désorption de l’oxygène à basse température : La diffusion des atomes O est plus rapide qu’attendue à basse température (< 10 K) (Minissale et al 2013, 2014, Congiu et al 2014), mais son énergie de désorption est plus élevée qu’on l’estimait précédemment (Minissale et al submitted).

  • Désorption chimique : Démonstration expérimentale (Dulieu et al 2013, Minissale & Dulieu 2014). Une étape importante pour faire le lien entre la chimie sur les grains et les observations en phase gazeuse
  • Désorption thermique : Importance de la surface et du faible taux de couverture dans l’étude la désorption thermique (Noble et al 2012a,b).
  • Morphologie de la glace : lors de la synthèse et sous l’action des réactions de formation de H2 la glace devient amorphe et compacte : (Accolla et al 2012, 2013)

Séminaires à venir

Vendredi 23 avril 2021, 14h00
Visioconférence, VIDEO
A stellar graveyard in the core of a globular cluster
Gary MAMON
IAP
résumé :
The ubiquity of supermassive black holes in massive galaxies suggests the existence of intermediate-mass ones (IMBHs) in smaller systems. However, IMBHs are at best rare in dwarf galaxies and not convincingly seen in globular clusters. We embarked on a search for such an IMBH in a very nearby core-collapsed globular cluster, NGC 7397. For this we ran extensive mass-orbit modeling with our Bayesian MAMPOSSt-PM code that fits mass and velocity anisotropy models to the distribution of observed tracers in 4D projected phase space. We used a combination of proper motions from HST and Gaia, supplemented with redshifts from MUSE. We found very strong Bayesian evidence for an excess of unseen mass in the core of the cluster amounting to 1 to 2% of the cluster mass. But surprisingly, we found rather strong evidence that this excess mass is not point-like but has a size of roughly 3% of that of the cluster. Our conclusion is robust to our adopted surface density profile and on our modeling of the velocity anisotropy, as the data suggest isotropic orbits throughout the cluster. It is also robust to our use of one or two classes of Main Sequence stars (given the mass segregation in collisional systems such as clusters), as well as on our filtering for quality data. The expected mass segregation suggests that the excess mass is made of objects heavier than Main Sequence stars: white dwarfs, neutron stars and possibly stellar black holes, all of which lost their orbital energy by dynamical friction to end up in the cluster core. I will discuss the evidence for and against the possibility that most of the unseen mass in the center is in the form of such black holes, as well as the consequences of this intriguing possibility.
 
Tous les séminaires...