LERMA UMR8112

Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères



Accueil > en > Research > Galaxies and Cosmology

Galaxies and Cosmology

par Françoise Combes - publié le , mis à jour le

This pole has several themes of research, which can be gathered in :

  1. The early universe : inflation, cosmic backgrounds, reionization
  2. Dark matter : Cold, warm or modified gravity ?
  3. Galaxy formation : high-z early galaxies, secular evolution and mergers
  4. Black holes and galaxies : AGN, starbursts, symbiotic growth and feedback
  5. Star formation efficiency, history and stellar populations

See Activities of the group for more details

The pole Galaxies and Cosmology includes a group working on the cosmic microwave background (CMB), who has a major role in the Planck mission, another group working on the standard model of the Universe, the inflation theory compared to observations. Another team studies through numerical simulations the epoch of reionization of the Universe (EoR, cf Fig 1), and in particular the preparation of SKA (Embrace prototype, key projects on pathfinders, etc..). Pioneering work has been done on cooling flows and the presence of cold molecular gas near the brightest cluster galaxies. The nature of dark matter, and investigation on alternative theories of modified gravity have been probed through galaxy dynamics and observations. A thorough study of AGN fueling and feedback has been carried out, addressing black hole growth history and galaxy evolution.

Figure 1 : Simulations de l’émission HI-21cm pendant l’Epoque de Réionisation (EoR). Exemple de surface de section du cône de lumière à 21-cm : dTb à partir de la simulation brute (à gauche) , dTb avec le bruit et la résolution de SKA (milieu) et dTb avec le bruit et la résolution de LOFAR (à droite). Les couleurs montrent la température de brilliance différentielle Tb en mK.

Another team works both on the observation of local galaxies, the physics of galaxies in clusters, galaxies at high redshift (cf Fig 2), and on the dynamical theories for the evolution and formation of galaxies, on large-scale star formation and the cosmic star formation history.
Multi-wavelengths observations are used extensively, in the millimeter and centimeter with the instruments of IRAM, the VLA and now ALMA since 2011-12, infrared and far-infrared with the satellites Spitzer and Herschel, optical and near-infrared with the CFHT and ESO. Team members are leaders in key programs, such as the NUGA consortium on the IRAM interferometer, the consortium PrimGal on the VLT, or major programs at IRAM (which will be completed by NOEMA in the near future) on distant galaxies, and the observation of galaxies at large z with APEX, Plateau de Bure and ALMA, which data are now frequently arriving to the various groups. One group is actively preparing for the SKA.

Figure 2 : Un des objets de l’échantillon dans le Grand Programme PHIBSS de l’IRAM PdB à z = 1.2 A gauche : Superposition de la carte de CO (en rouge, obtenue avec l’interféromètre de l’IRAM), avec les images en bande I (en vert) et la bande V (en bleu) obtenues avec le télescope spatial Hubble. La raie CO(3-2), décalée vers le rouge à 2 mm, a été observée avec une résolution angulaire de 0,6 "x0.7" (indiqué par l’ellipse grise hachurée). A droite : Champ de vitesse de la galaxie : bleu indique la vitesse négative (côté en approche), et la vitesse rouge positif (côté en récession).

One specialty of the pole is also heavy numerical simulations, and the team competed at a very high level in the HORIZON project program of formation of galaxies in a cosmological context. Always larger and more impressive simulations are now going on with the supercomputers at GENCI (Curie at CEA, IDRIS, CINES), and locally use of the meso-center and local momentum cluster is favoring the exploitation and post-processing.

Figure 3 : La galaxie spirale barrée NGC 1433, cartographiée avec ALMA en CO(3-2). The trou noir central super-massif est un noyau actif (AGN), qui rejette du gaz moléculaire, et modère la formation d’étoiles.

Voir en ligne : Activities of the group

Séminaires à venir

Vendredi 22 mars 2019, 14h00
Salle de l'atelier, Paris
New Planckian quantum phase of the Universe before Inflation: Its present day and Dark Energy implications
Sanchez, Norma
LERMA
résumé :
The physical history of the Universe is completed by including the quantum planckian and super-planckian phase before Inflation in the Standard Model of the Universe in agreement with observations. In the absence of a complete quantum theory of gravity, we start from quantum physics and its foundational milestone: the universal classical-quantum (or wave-particle) duality, which we extend to gravity and the Planck domain. A new quantum precursor phase of the Universe appears beyond the Planck scale. Relevant cosmological examples as the Cosmic Microwave Background, Inflation and Dark Energy have their precursors in this era. A whole unifying picture for the Universe epochs and their quantum precursors emerges with the cosmological constant as the vacuum energy, entropy and temperature of the Universe, clarifying the so called cosmological constant problem which once more in its rich history needed to be revised. The consequences for the deep universe surveys, and missions like Euclid will be outlined.
 
Vendredi 5 avril 2019, 14h00
Salle de l'atelier, Paris
The magnetized interstellar medium in the Galaxy through Faraday tomography of the radio sky
Andrea BRACCO
ENS
résumé :
The study of the diffuse Galactic interstellar medium (ISM) is both a
waypoint to investigate the processes that turn gas into stars and to
account for foreground contaminations in modern high-precision
cosmological probes of the Universe.

New structures in the diffuse ionized and magnetized ISM have been
recently observed through Faraday tomography of polarization data at low
radio frequencies. Although the physical origin of these structures
remains uncertain, interesting correlations with tracers of neutral ISM,
such as atomic hydrogen lines and interstellar dust polarization, have
been found. This opens an observational window on the first stages of
phase transition between diffuse/warm and denser/colder gas under the
presence of magnetic fields, allowing us to constrain their role in
structure formation in the ISM.

In my talk I will present an overview of the recent findings in the
diffuse Galactic ISM with the LOFAR radio polarization data. I will
highlight the relevance of a thorough statistical description of these
data both for Galactic studies and for modeling their impact as a
foreground to the detection of the atomic hydrogen 21cm hyperfine
transition from the Epoch of Reionization, a key step with the upcoming
Square Kilometre Array (SKA).
 
Vendredi 12 avril 2019, 14h00
Salle de l'atelier, Paris
Radiation magnetohydrodynamic models and spectral signatures of plasma flows accreting onto young stellar object
Salvatore COLOMBO
LERMA
résumé :
According to the largely accepted magnetospheric accretion scenario, classical T Tauri Stars (CTTSs) are young stars that accrete material from their circumstellar disk. The objective of my PhD project is to shed light on the processes governing the physics of the accreting plasma flows, through complete radiation magnetohydrodynamic models. In this talk, I will present the results obtained during my 18 month period in Paris.

First, I will focus on the results obtained from a 3D magnetohydrodynamical (MHD) model of a star-disk system. We simulate the effects of series of flares occurring on the surface of the disk. We observe that each flare produces a hot loops that links the star to the disk; all the loops build up a hot extended corona that irradiates the disk from above. Moreover, the flares trigger overpressure waves that travel through the disk and modify its configuration. Accretion funnels may be triggered by the flaring activity and thus contribute to the mass accretion rate of the star. The accretion columns can be perturbed by the flares. As a result, the streams are highly inhomogeneous, with a complex density structure, and clumped.

Second, I will provide the first assessment of the role of radiation effects on the dynamics and the structure of the impact region of the accreting column onto the stellar surface. In particular, we proved the existence of a radiative precursor in the pre-shock part of the accreting column. To achieve such a result, we have, for the first time, developed a Non Local Thermodynamic Equilibrium (non-LTE) radiation hydrodynamics model, which we implemented in the 3D MHD PLUTO code.”

 
Vendredi 21 juin 2019, 14h00
Salle de l'atelier, Paris
Accretion-driven turbulence and observational signatures
Pierre GUILLARD
IAP
 
Tous les séminaires...