LERMA UMR8112

Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères



Accueil > en > Practical Information > LERMA Detailed Presentation

LERMA presentation

publié le , mis à jour le

LERMA (Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres) is a research entity operated by CNRS and 3 higher education institutions : Observatoire de Paris (OP), Sorbonne Université (SU), and Université de Cergy-Pontoise (UCP). These 3 institutions host the various research groups of LERMA.

Organisation of the laboratory and research topics
LERMA is organized in 4 Research Poles, complemented by 1 transverse structure dedicated to Technology and Research Support. Doctoral studies are principally conducted within École doctorale Astronomie et Astrophysique d’Île de France (ED 127), but about half of our PhD students belong to other doctoral schools in physics, engineering and environment (ED 129, 391, 389, Ed-PIF et 417).

"Galaxies and Cosmology" (OP)

  • Early Universe
  • Galaxy formation and dynamics
  • Clusters of galaxies
  • Dark matter
  • Active galactic nuclei, star formation and feedback in galaxies

"Dynamics of the Interstellar Medium and Stellar Plasmas" (ENS, OP, UPMC)

  • Observational characterization of the ISM cycle
  • Modeling ISM evolution from diffuse gas to stars and disks
  • Chemical diagnostics of ISM dynamics
  • Turbulent and radiative transport in (circum)stellar plasmas
  • Experimental studies of (circum)stellar plasmas

"Molecules in the Universe" (UCP, OP, UPMC)

  • Gas-surface interactions
  • Gas-phase molecular processes
  • Exotic isotopic spin ratios
  • Molecular parameters for planetary, terrestrial atmospheres and ISM

"Instrumentation Terahertz and Remote Sensing" (OP)

  • THz components and subsystems
  • THz heterodyne instruments
  • Characterization of clear, cloudy, and rainy atmospheres
  • Characterization of Earth, planets, and comets
  • Data processing, storage and diffusion

Personnel (as of January 2017)

  • 46 engineers and technicians (including 10 under contract)
  • 10 astronomers (including 2 emeriti)
  • 32 teaching researchers (including 3 emeriti and 3 under contract)
  • 21 researchers (including 7 emeriti) 7 post-doctoral fellows
  • 41 PhD students

Salient results

  • The earliest phase of star formation, captured through its bipolar ejection activity (Gerin et al. 2015 A&A 577, L2). La toute première étape de la formation d’une étoile, révélée par son éjection bipolaire (Gerin et al. 2015 A&A 577, L2).
  • New method for measuring the diffusion and desorption energy of atoms and (Minissale, M., Congiu, E., & Dulieu, F. 2016, A&A, 585 A146). Nouvelle méthode pour mesurer l’énergie de diffusion et de désorption des atomes et radicaux (Minissale, M., Congiu, E., & Dulieu, F. 2016, A&A, 585 A146).
  • First results on a 1200 GHz Schottky receiver prototype for JUICE-SWI (Maestrini, A., et al 2016). Les premiers résultats sur le prototype de récepteur Schottky à 1200 GHz pour JUICE-SWI (Maestrini, A., et al 2016).

Séminaires à venir

Vendredi 3 avril 2020, 14h00
Salle de l'atelier, Paris
The great dimming of Betelgeuse in 2019-2020
Miguel MONTARGES
KU Leuven, Institute of Astronomy
résumé :
Red supergiant stars are important contributors to the chemical enrichment of the Universe. Together with asymptotic giant branch stars, their lower mass counterpart, they contribute ~ 85% of gas and ~ 35% of dust to the total enrichment of the interstellar medium. Moreover, the stellar wind has a crucial impact on the final mass, hence on the nature of the compact remnant left after the supernova: a 20 solar mass star can loose up to 60% of its mass during its life. Yet the mechanism at the origin of the red supergiant mass loss remains unknown: there is no physical scenario to lift material from the photosphere up to the dust condensation zone where radiative pressure on small grains can drive the wind.

In November-December 2019, the prototypical red supergiant Betelgeuse started an impressive dimming that brought it to 37% of its average optical brightness in February 2020. It is dimmer than this star has been since quantitative magnitude measurements have been recorded (150 years). We have observed Betelgeuse at high angular resolution during this peculiar event with the VLT/SPHERE, VLTI/GRAVITY and VLTI/MATISSE instruments. I will present the first results of this multi-wavelength and multi-technique campaign and bring them in the context of the study of the red supergiant mass loss.
 
Vendredi 17 avril 2020, 14h00
Salle de l'atelier, Paris
Patricia TISSERA
Universidad Andres Bello, Santiago, Chili
 
Vendredi 24 avril 2020, 14h00
Salle de l'atelier, Paris
Tba
Philippe ANDRE
CEA
 
Tous les séminaires...