LERMA UMR8112

Laboratoire d’Études du Rayonnement et de la Matière en Astrophysique et Atmosphères



Accueil > fr > Recherche > Milieu Interstellaire et Plasmas

Milieu Interstellaire et Plasmas

publié le , mis à jour le

Quels processus contrôlent l’évolution de la matière, dans notre galaxie et les galaxies extérieures ? Quels sont les rôles de la turbulence, du champ magnétique, des rayons cosmiques et du rayonnement multi-longueur d’onde ? Ces questions fondamentales pour l’Astrophysique actuelle se posent désormais à toutes les échelles spatiales et pour une multitude d’environnements : des échelles galactiques où le gaz diffus se condense pour former les précurseurs des nouvelles étoiles ; à l’échelle des disques proto-planétaires où l’étoile centrale interagit fortement avec son environnement ; jusque dans les étoiles elles-mêmes où les phénomènes de transport sont toujours mal connus. Le pôle « Milieu interstellaire et plasmas » du LERMA couvre tous ces domaines en combinant des travaux théoriques, des modèles numériques, des simulations 3D et des observations spatiales à hautes résolutions angulaire et spectrale.

JPEG - 486.4 ko

Au niveau observationnel, notre pôle thématique est profondément impliqué dans l’analyse de données issues des observatoires de pointe au sol et dans l’espace, en particulier dans le domaine infrarouge et sub-millimétrique où émettent les molécules et les grains de poussière interstellaire. Nos recherches ont ainsi bénéficié des récents succès des observatoires spatiaux Herschel et Planck et se nourrissent continuellement des données collectées avec la nouvelle génération d’instruments (APEX, SOFIA, ALMA et bientôt NOEMA).

JPEG - 2.5 Mo

D’un point de vue numérique, les codes développés par notre pôle pour l’interpretation des observations font partie des outils les plus perfectionnés au niveau international. Notre expertise s’étend ainsi de la conception de simulations numériques magnétohydrodynamiques sur grille, que nous résolvons à l’aide des super-calculateurs actuels (e.g. PRACE, MesoPSL), au développement de codes de modélisation avancés. Ces derniers, dont certains sont accessibles en ligne sur la plate-forme MIS et jets, se distinguent par l’inclusion de nombreux processus de micro-physiques dont les descriptions s’appuient sur les résultats d’expériences et les calculs théoriques, réalisés en partie dans notre laboratoire.


Cliquez sur les liens ci-dessous pour en savoir plus sur nos activités


1. Turbulence & champ magnétique

2. Interactions matière / rayonnement

3. Plasmas stellaires et astrophysique de laboratoire

4. Coeurs préstellaires

5. Proto-étoiles, disques & jets

6. Accrétion & éjection dans les étoiles


Cliquez ici pour accéder à nos publications

Séminaires à venir

Vendredi 21 septembre 2018, 14h00
Salle de l'atelier, Paris
Understanding the structure of molecular clouds: Multi-line wide-field imaging of Orion B
Jan ORKISZ
Iram
résumé :
The new generation of wide-bandwidth high-resolution receivers turns
almost any radio observation into a spectral survey. In the case of
wide-field imaging of the interstellar medium, such a wealth of data
provides new diagnostic tools, but also poses new challenges in terms of
data processing and analysis.

The ORION-B project aims at observing 5 square degrees of the Orion B
molecular cloud, or about half of the cloud's surface, over the entire
3mm band. The emission of tens of molecular tracers have been mapped,
including CO isotopologues, HCO+, CN, HNC, N2H+, methanol, SO, CN...
Machine learning techniques have been applied to these maps, in order to
segment the molecular cloud into typical regions based on their
molecular emission, and to idenfify the most meaningful correlations of
different molecular tracers with each other and with physical quantities
such as density or dust temperature.

The spatial coverage, together with the spatial and spectral resolution,
also allow to characterize statistically the kinematics and dynamics of
the gas. The amount of momentum in the compressive and solenoidal
(rotational) modes of turbulence are retrieved, showing that the cloud
is dominated by solenoidal motions, with the compressive modes being
concentrated in two star-forming regions - which is in line with the
overall very low star formation efficiency of the cloud, and highlights
the role of compressive forcing in the star formation process. The
filamentary network of the molecular cloud also proves to have
particluarly low densities, and is very stable against gravitational
collapse and fragmentation, which also points at a young evolutionary
stage of the filaments.
 
Vendredi 5 octobre 2018, 14h00
Salle de l'atelier, Paris
Astrochemistry in star forming regions : new modeling approaches
Emeric BRON
IRAM/LERMA
résumé :
Star-forming regions present rich infrared and millimeter spectra emitted by the gas exposed to the feedback of young stars. This emission is increasingly used to study the star formation cycle in other galaxies, but results from a complex interplay of physical and chemical processes : chemistry in the gas and on grain surfaces, (de)excitation processes of the atoms and molecules, heating and cooling balance,... Its understanding thus requires detailed astrochemical models that include the couplings between these processes. In this talk, I will present several examples where new modeling approaches of specific processes and their couplings proved crucial to solve persistent observational riddles : from the driving role of UV irradiation in the dynamics of photodissociation regions (PDR) to the efficient reformation of molecular hydrogen in these regions.
 
Tous les séminaires...